An Integrated CEEMDAN to Optimize Deep Long Short-Term Memory Model for Wind Speed Forecasting

被引:3
作者
He, Yingying [1 ,2 ]
Zhang, Likai [3 ]
Guan, Tengda [3 ]
Zhang, Zheyu [3 ]
机构
[1] Chongqing Coll Humanities Sci & Technol, Sch Comp Engn, Chongqing 401524, Peoples R China
[2] Chongqing Coll Humanities Sci & Technol, Res Ctr Big Data & Network Informat Secur Engn Tec, Chongqing 401524, Peoples R China
[3] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
关键词
wind speed forecasting; complete ensemble empirical mode decomposition; long short-term memory; time series forecasting; NEURAL-NETWORK; PREDICTION; ENSEMBLE; INTELLIGENT;
D O I
10.3390/en17184615
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate wind speed forecasting is crucial for the efficient operation of renewable energy platforms, such as wind turbines, as it facilitates more effective management of power output and maintains grid reliability and stability. However, the inherent variability and intermittency of wind speed present significant challenges for achieving precise forecasts. To address these challenges, this study proposes a novel method based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and a deep learning-based Long Short-Term Memory (LSTM) network for wind speed forecasting. In the proposed method, CEEMDAN is utilized to decompose the original wind speed signal into different modes to capture the multiscale temporal properties and patterns of wind speeds. Subsequently, LSTM is employed to predict each subseries derived from the CEEMDAN process. These individual subseries predictions are then combined to generate the overall final forecast. The proposed method is validated using real-world wind speed data from Austria and Almeria. Experimental results indicate that the proposed method achieves minimal mean absolute percentage errors of 0.3285 and 0.1455, outperforming other popular models across multiple performance criteria.
引用
收藏
页数:28
相关论文
共 48 条
[1]   Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies [J].
Acharya, S. ;
Adamova, D. ;
Rinella, G. Aglieri ;
Agnello, M. ;
Agrawal, N. ;
Ahammed, Z. ;
Ahmad, S. ;
Ahn, S. U. ;
Ahuja, I. ;
Akindinov, A. ;
Al-Turany, M. ;
Aleksandrov, D. ;
Alessandro, B. ;
Alfanda, H. M. ;
Molina, R. Alfaro ;
Ali, B. ;
Alici, A. ;
Alizadehvandchali, N. ;
Alkin, A. ;
Alme, J. ;
Alocco, G. ;
Alt, T. ;
Altamura, A. R. ;
Altsybeev, I. ;
Alvarado, J. R. ;
Anaam, M. N. ;
Andrei, C. ;
Andreou, N. ;
Andronic, A. ;
Anguelov, V. ;
Antinori, F. ;
Antonioli, P. ;
Apadula, N. ;
Aphecetche, L. ;
Appelshaeuser, H. ;
Arata, C. ;
Arcelli, S. ;
Aresti, M. ;
Arnaldi, R. ;
Arneiro, J. G. M. C. A. ;
Arsene, I. C. ;
Arslandok, M. ;
Augustinus, A. ;
Averbeck, R. ;
Azmi, M. D. ;
Baba, H. ;
Badala, A. ;
Bae, J. ;
Baek, Y. W. ;
Bai, X. .
PHYSICS LETTERS B, 2024, 850
[2]   Comparison of wind speed distributions: a case study for Aegean coast of Turkey [J].
Akgul, Fatma Gul ;
Senoglu, Birdal .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (01) :2453-2470
[3]   Short-term wind speed forecasting based on long short-term memory and improved BP neural network [J].
Chen, Gonggui ;
Tang, Bangrui ;
Zeng, Xianjun ;
Zhou, Ping ;
Kang, Peng ;
Long, Hongyu .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
[4]   Short-term wind speed predicting framework based on EEMD-GA-LSTM method under large scaled wind history [J].
Chen, Yaoran ;
Dong, Zhikun ;
Wang, Yan ;
Su, Jie ;
Han, Zhaolong ;
Zhou, Dai ;
Zhang, Kai ;
Zhao, Yongsheng ;
Bao, Yan .
ENERGY CONVERSION AND MANAGEMENT, 2021, 227
[5]   SWAN: A multihead autoregressive attention model for solar wind speed forecasting [J].
Cobos-Maestre, Mario ;
Flores-Soriano, Manuel ;
Barrero, David F. .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
[6]   Climate change effects on rainfall extreme value distribution: the role of skewness [J].
De Luca, Davide Luciano ;
Ridolfi, Elena ;
Russo, Fabio ;
Moccia, Benedetta ;
Napolitano, Francesco .
JOURNAL OF HYDROLOGY, 2024, 634
[7]   A short-term wind power prediction model based on CEEMD and WOA-KELM [J].
Ding, Yunfei ;
Chen, Zijun ;
Zhang, Hongwei ;
Wang, Xin ;
Guo, Ying .
RENEWABLE ENERGY, 2022, 189 :188-198
[8]   An innovative interpretable combined learning model for wind speed forecasting [J].
Du, Pei ;
Yang, Dongchuan ;
Li, Yanzhao ;
Wang, Jianzhou .
APPLIED ENERGY, 2024, 358
[9]   The role of renewable energy in the global energy transformation [J].
Gielen, Dolf ;
Boshell, Francisco ;
Saygin, Deger ;
Bazilian, Morgan D. ;
Wagner, Nicholas ;
Gorini, Ricardo .
ENERGY STRATEGY REVIEWS, 2019, 24 :38-50
[10]   Improving short-term offshore wind speed forecast accuracy using a VMD-PE-FCGRU hybrid model [J].
Gong, Zhipeng ;
Wan, Anping ;
Ji, Yunsong ;
AL-Bukhaiti, Khalil ;
Yao, Zhehe .
ENERGY, 2024, 295