共 9 条
- [1] High order exactly well-balanced numerical methods for shallow water systems[J]. Castro Diaz, M. J.;Lopez-Garcia, J. A.;Pares, Carlos. JOURNAL OF COMPUTATIONAL PHYSICS, 2013
- [2] Well-Balanced High-Order Finite Volume Methods for Systems of Balance Laws[J]. Castro, Manuel J.;Pares, Carlos. JOURNAL OF SCIENTIFIC COMPUTING, 2020(02)
- [3] Collocation Methods for High-Order Well-Balanced Methods for Systems of Balance Laws[J]. Gomez-Bueno, Irene;Castro Diaz, Manuel Jesus;Pares, Carlos;Russo, Giovanni. MATHEMATICS, 2021(15)
- [4] High-order well-balanced methods for systems of balance laws: a control-based approach[J]. Gomez-Bueno, Irene;Castro, Manuel J.;Pares, Carlos. APPLIED MATHEMATICS AND COMPUTATION, 2021
- [5] Total variation diminishing Runge-Kutta schemes[J]. Gottlieb, S;Shu, CW. MATHEMATICS OF COMPUTATION, 1998(221)
- [6] Well-balanced finite volume schemes for nearly steady adiabatic flows[J]. Grosheintz-Laval, L.;Kaeppeli, R. JOURNAL OF COMPUTATIONAL PHYSICS, 2020
- [7] HAIRER E., 2006, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, V2nd, DOI 10.1007/978-3-662-05018-7
- [8] Shu C.-W., 1998, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, P325
- [9] A second-order positivity-preserving well-balanced finite volume scheme for Euler equations with gravity for arbitrary hydrostatic equilibria[J]. Thomann, Andrea;Zenk, Markus;Klingenberg, Christian. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019(11)