The Mechanism of Rapid and Green Metal-Organic Framework Synthesis by In Situ Spectroscopy and Diffraction

被引:4
作者
Kochetygov, Ilia [1 ]
Maggiulli, Luca [1 ,2 ]
Ranocchiari, Marco [1 ]
Ferri, Davide [1 ]
机构
[1] Paul Scherrer Inst, PSI Ctr Energy & Environm Sci, CH-5232 Villigen, Switzerland
[2] Swiss Fed Inst Technol, Inst Chem & Bioengn, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland
关键词
TECHNOECONOMIC ANALYSIS; X-RAY; HYDROGEN; MOF-74; MOFS; NI; CO;
D O I
10.1021/acs.chemmater.4c00879
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Room-temperature aqueous synthesis provides facile access to metal-organic frameworks (MOFs) through green routes, avoiding the use of toxic solvents at high temperatures that are typical for common solvothermal MOF synthesis routes. Nevertheless, mechanisms of green aqueous MOF syntheses remain unexplored, hindering their further development. In this work, we for the first time report a comprehensive investigation of the synthesis of a MOF, Zn-MOF-74 (also known as CPO-27-Zn), in aqueous phase at room temperature. Using a unique combination of in situ infrared spectroscopy (IR) and high-energy X-ray diffraction (XRD), we reveal mechanistic insights into the fast synthesis (2-10 min) of Zn-MOF-74 from different sources, zinc acetate, and zinc perchlorate, at six different temperatures from 5 to 40 degrees C. A 5-fold acceleration was observed when using the noncoordinating perchlorate ion, making it an alternative precursor to decrease synthesis time. Furthermore, a correlation between IR and XRD data was established, allowing to monitor nucleation and growth processes individually with both techniques. Last, the particle size and shape distribution was linked to the differences in mechanistic kinetic parameters, allowing for their control by the choice of synthesis temperature and precursors.
引用
收藏
页码:6877 / 6887
页数:11
相关论文
共 48 条
[1]   Technoeconomic analysis of metal-organic frameworks for bulk hydrogen transportation [J].
Anastasopoulou, Aikaterini ;
Furukawa, Hiroyasu ;
Barnett, Brandon R. ;
Jiang, Henry Z. H. ;
Long, Jeffrey R. ;
Breunig, Hanna M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (03) :1083-1094
[2]  
[Anonymous], 2023, Lmfit/Lmfit-Py: 2.1
[3]  
[Anonymous], 2022, Pybaselines: APython Library of Algorithms for the BaselineCorrection of Experimental Data
[4]   Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation [J].
Bauer, Gerald ;
Ongari, Daniele ;
Tiana, Davide ;
Gaumann, Patrick ;
Rohrbach, Thomas ;
Pareras, Gerard ;
Tarik, Mohamed ;
Smit, Berend ;
Ranocchiari, Marco .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   Mechanistic Investigations into and Control of Anisotropic Metal-Organic Framework Growth [J].
Bonnett, Brittany L. ;
Ilic, Stefan ;
Flint, Katie ;
Cai, Meng ;
Yang, Xiaozhou ;
Cornell, Hannah D. ;
Taylor, Ashleigh ;
Morris, Amanda J. .
INORGANIC CHEMISTRY, 2021, 60 (14) :10439-10450
[6]   pyMCR: A Python']Python Library for Multivariate Curve Resolution Analysis with Alternating Regression (MCR-AR) [J].
Camp, Charles H., Jr. .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2019, 124
[7]   MOFs in the time domain [J].
Cerasale, Daniel J. ;
Ward, Dominic C. ;
Easun, Timothy L. .
NATURE REVIEWS CHEMISTRY, 2022, 6 (01) :9-30
[8]   Large-Scale Production of Metal-Organic Frameworks [J].
Chakraborty, Debanjan ;
Yurdusen, Aysu ;
Mouchaham, Georges ;
Nouar, Farid ;
Serre, Christian .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (43)
[9]   Multivariate Curve Resolution (MCR). Solving the mixture analysis problem [J].
de Juan, Anna ;
Jaumot, Joaquim ;
Tauler, Rom A. .
ANALYTICAL METHODS, 2014, 6 (14) :4964-4976
[10]   Techno-economic Analysis of Metal-Organic Frameworks for Hydrogen and Natural Gas Storage [J].
DeSantis, Daniel ;
Mason, Jarad A. ;
James, Brian D. ;
Houchins, Cassidy ;
Long, Jeffrey R. ;
Veenstra, Mike .
ENERGY & FUELS, 2017, 31 (02) :2024-2032