On algebras embeddable into bicommutative algebras

被引:2
作者
Ismailov, N. A. [1 ]
Mashurov, F. A. [2 ,3 ]
Sartayev, B. K. [4 ,5 ,6 ]
机构
[1] Astana IT Univ, Astana, Kazakhstan
[2] Southern Univ Sci & Technol, Shenzhen Int Ctr Math, Shenzhen, Guangdong, Peoples R China
[3] SDU Univ, Kaskelen, Kazakhstan
[4] Narxoz Univ, Alma Ata, Kazakhstan
[5] UAE Univ, Al Ain, U Arab Emirates
[6] Narxoz Univ, Sch Digital Technol, Alma Ata, Kazakhstan
关键词
Bicommutative algebra; metabelian Lie algebra; speciality problem; FREIHEITSSATZ; AUTOMORPHISMS; VARIETIES;
D O I
10.1080/00927872.2024.2358178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider algebras embeddable into free bicommutative algebras with respect to commutator and anti-commutator products over a field of characteristic zero. We show that every metabelian Lie algebra can be embedded into a bicommutative algebra with respect to the commutator product. Furthermore, we prove that the class of commutative algebras embeddable into bicommutative algebras with respect to the anti-commutator product forms a variety. As a consequence, we obtain that every metabelian Lie algebra can be embedded into a Novikov algebra with respect to the commutator product.
引用
收藏
页码:4778 / 4785
页数:8
相关论文
共 26 条
[1]  
Bahturin Yu. A., 1968, MATH NOTES+, V4, P725
[2]  
Bahturin Yu. A., 1987, TRANSLATED RUSSIAN B
[3]   Gelfand-Kirillov dimension of bicommutative algebras [J].
Bai, Yuxiu ;
Chen, Yuqun ;
Zhang, Zerui .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (22) :7623-7649
[4]   Complete LR-structures on solvable Lie algebras [J].
Burde, Dietrich ;
Dekimpe, Karel ;
Vercammen, Kim .
JOURNAL OF GROUP THEORY, 2010, 13 (05) :703-719
[5]   Affine actions on nilpotent Lie groups [J].
Burde, Dietrich ;
Dekimpe, Karel ;
Deschamps, Sandra .
FORUM MATHEMATICUM, 2009, 21 (05) :921-934
[6]  
Burde D, 2009, CONTEMP MATH, V491, P125
[7]   ON HOMOMORPHIC IMAGES OF SPECIAL JORDAN ALGEBRAS [J].
COHN, PM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (02) :253-264
[8]  
Drensky V., 2019, Serdica Mathematical Journal, V45, P167
[9]   Free bicommutative superalgebras [J].
Drensky, Vesselin ;
Ismailov, Nurlan ;
Mustafa, Manat ;
Zhakhayev, Bekzat .
JOURNAL OF ALGEBRA, 2024, 652 :158-187
[10]   Noetherianity and Specht problem for varieties of bicommutative algebras [J].
Drensky, Vesselin ;
Zhakhayev, Bekzat K. .
JOURNAL OF ALGEBRA, 2018, 499 :570-582