Silicon Nanowires via Metal-Assisted Chemical Etching for Energy Storage Applications

被引:2
|
作者
Mateen, Abdul [1 ]
Khan, Abdul Jabbar [2 ]
Zhou, Zidong [1 ]
Mujear, Altaf [1 ]
Farid, Ghulam [3 ]
Yan, Wei [1 ]
Li, Haojie [1 ]
Li, Jiawen [1 ]
Bao, Zhihao [1 ]
机构
[1] Tongji Univ, Sch Phys Sci & Engn, Shanghai Key Lab Special Artificial Microstruct Ma, Shanghai 200092, Peoples R China
[2] Huanggang Normal Univ, Coll Chem & Chem Engn, Huanggang 438000, Peoples R China
[3] Univ Barcelona, Dept Appl Phys, Barcelona 08028, Catalunya, Spain
关键词
Energy storage devices; Metal assisted chemical etching; Lithium-ion batteries; Silicon nanowires; Supercapacitors; HIGH-PERFORMANCE; ELECTRODE MATERIALS; COPPER DEPOSITION; RECENT PROGRESS; SI NANOWIRES; ARRAYS; SURFACE; WAFER; NANOPARTICLES; MECHANISM;
D O I
10.1002/cssc.202400777
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon nanowires (SiNWs) have demonstrated great potential for energy storage due to their exceptional electrical conductivity, large surface area, and wide compositional range. Metal-assisted chemical etching (MACE) is a widely used top-down technique for fabricating silicon micro/nanostructures. SiNWs fabricated by MACE exhibit significant surface areas and diverse surface chemistry. Since the material composition and surface chemistry have a significant impact on the electrochemical energy storage performance, integrating SiNWs with diverse materials like porous carbon, metal oxides/sulfides, and polymers, can establish composites with excellent properties. Hence, it is imperative to meticulously fabricate SiNW-based materials with customizable morphologies and enhanced electrochemical energy-storage performance. This review provides an in-depth study of recent advancements in SiNW-based materials with enhanced performance for energy storage systems, such as supercapacitors (SCs) and lithium-ion batteries (LIBs). It includes a concise overview of the history, MACE synthesis, and characteristics of SiNWs. Further, it also explores the key elements that influence the MACE process of SiNWs and delves into structural engineering. Additionally, we introduce recent advances in SiNW-based materials for the design of high-performance energy-storage devices, namely SCs and LIBs. Finally, we present the crucial future prospects of SiNW-based materials for energy-storage applications. This review provides a brief discussion on history, principle of metal-assisted chemical etching (MACE) and factors influencing MACE of silicon nanowires (SiNWs). Integration of SiNWs with diverse materials and their applications for supercapacitors (SCs) and lithium-ion batteries (LIBs) are also comprehensively reviewed. Finally, the strategies to enhance the performance of SiNW-based materials for SCs and LIBs are discussed. image
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Direct Imprinting of Porous Silicon via Metal-Assisted Chemical Etching
    Azeredo, Bruno P.
    Lin, Yu-Wei
    Avagyan, Arik
    Sivaguru, Mayandi
    Hsu, Keng
    Ferreira, Placid
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (17) : 2929 - 2939
  • [22] Hierarchical silicon nanostructured arrays via metal-assisted chemical etching
    Lin, Hao
    Fang, Ming
    Cheung, Ho-Yuen
    Xiu, Fei
    Yip, Senpo
    Wong, Chun-Yuen
    Ho, Johnny C.
    RSC ADVANCES, 2014, 4 (91): : 50081 - 50085
  • [23] Deep Etching of Silicon Based on Metal-Assisted Chemical Etching
    Nur'aini, Anafi
    Oh, Ilwhan
    ACS OMEGA, 2022, 7 (19): : 16665 - 16669
  • [24] Fabrication of Silicon Nanowires by Metal-Assisted Chemical Etching Combined with Micro-Vibration
    Huang, Weiye
    Wu, Junyi
    Li, Wenxin
    Chen, Guojin
    Chu, Changyong
    Li, Chao
    Zhu, Yucheng
    Yang, Hui
    Chao, Yan
    MATERIALS, 2023, 16 (15)
  • [25] Anisotropic characteristics and morphological control of silicon nanowires fabricated by metal-assisted chemical etching
    Kong Liu
    Shengchun Qu
    Xinhui Zhang
    Zhanguo Wang
    Journal of Materials Science, 2013, 48 : 1755 - 1762
  • [26] Raman diagnostics of photoinduced heating of silicon nanowires prepared by metal-assisted chemical etching
    S. P. Rodichkina
    L. A. Osminkina
    M. Isaiev
    A. V. Pavlikov
    A. V. Zoteev
    V. A. Georgobiani
    K. A. Gonchar
    A. N. Vasiliev
    V. Yu. Timoshenko
    Applied Physics B, 2015, 121 : 337 - 344
  • [27] Growth, Structure and Optical Properties of Silicon Nanowires Formed by Metal-Assisted Chemical Etching
    Gonchar, K. A.
    Osminkina, L. A.
    Galkin, R. A.
    Gongalsky, M. B.
    Marshov, V. S.
    Timoshenko, V. Yu
    Kulmas, M. N.
    Solovyev, V. V.
    Kudryavtsev, A. A.
    Sivakov, V. A.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2012, 7 (06) : 602 - 606
  • [28] A Processing Window for Fabricating Heavily Doped Silicon Nanowires by Metal-Assisted Chemical Etching
    Qi, Yangyang
    Wang, Zhen
    Zhang, Mingliang
    Yang, Fuhua
    Wang, Xiaodong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (47): : 25090 - 25096
  • [29] Anisotropic characteristics and morphological control of silicon nanowires fabricated by metal-assisted chemical etching
    Liu, Kong
    Qu, Shengchun
    Zhang, Xinhui
    Wang, Zhanguo
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (04) : 1755 - 1762
  • [30] A systematic study of silicon nanowires array fabricated through metal-assisted chemical etching
    Zhang, Shiying
    Li, Zhenhua
    Xu, Qingjun
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2020, 92 (03):