Reversible Oxygen Redox Chemistry in High-Entropy P2-Type Manganese-Based Cathodes via Self-Regulating Mechanism

被引:6
作者
Zhou, Yujin [1 ]
Li, Lanyan [2 ]
Lin, Haisheng [1 ]
Ma, Zhongyun [1 ]
Wang, Xianyou [1 ]
Fang, Guozhao [3 ,4 ]
Luo, Zhigao [1 ,5 ]
机构
[1] Xiangtan Univ, Coll Chem, Xiangtan 411105, Peoples R China
[2] Hunan Univ Technol & Business, Sch Sci, Changsha 410205, Peoples R China
[3] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[4] Cent South Univ, Natl Energy Met Resources & New Mat Key Lab, Changsha 410083, Peoples R China
[5] Minist Educ, Key Lab Environme Friendly Chem & Applicat Minist, Natl Local Joint Engn Lab Key Mat New Energy Stora, Natl Base Int Sci & Technol Cooperat, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion batteries; high-entropy; oxygenredox; self-regulating; vacancy wall; LAYERED OXIDE CATHODES; HIGH-CAPACITY; SODIUM; VISUALIZATION; SUBSTITUTION; STRATEGIES; ORIGIN; STRAIN; CARBON;
D O I
10.1021/acsami.4c05876
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The irreversible oxygen-redox reactions in the high-voltage region of sodium-layered cathode materials lead to poor capacity retention and structural instability during cycling, presenting a significant challenge in the development of high-energy-density sodium-ion batteries. This work introduces a high-entropy design for layered Na0.67Li0.1Co0.1Cu0.1Ni0.1Ti0.1Mn0.5O2 (Mn-HEO) cathode with a self-regulating mechanism to extend specific capacity and energy density. The oxygen redox reaction was activated during the initial charging process, accompanied by the self-regulation of active elements, enhancing the ionic bonds to form a vacancy wall near the TM vacancies and thus preventing the migration of transition metal elements. Systematic in situ/ex situ characterizations and theoretical calculations comprehensively support the understanding of the self-regulation mechanism of Mn-HEO. As a result, the Mn-HEO cathode exhibits a stable structure during cycling. It demonstrates almost zero strain within a wide voltage range of 2.0-4.5 V with a remarkable specific capacity (177 mAh g(-1) at 0.05 C) and excellent long-term cycling stability (87.6% capacity retention after 200 cycles at 2 C). This work opens a new pathway for enhancing the stability of oxygen-redox chemistry and revealing a mechanism of crystal structure evolution for high-energy-density layered oxides.
引用
收藏
页码:33539 / 33547
页数:9
相关论文
共 58 条
[1]   Unified picture of anionic redox in Li/Na-ion batteries [J].
Ben Yahia, Mouna ;
Vergnet, Jean ;
Saubanere, Matthieu ;
Doublet, Marie-Liesse .
NATURE MATERIALS, 2019, 18 (05) :496-+
[2]   Reversible anionic redox chemistry in layered Li4/7[□1/7Mn6/7]O2 enabled by stable Li-O-vacancy configuration [J].
Cao, Xin ;
Li, Haifeng ;
Qiao, Yu ;
He, Ping ;
Qian, Yumin ;
Yue, Xiyan ;
Jia, Min ;
Cabana, Jordi ;
Zhou, Haoshen .
JOULE, 2022, 6 (06) :1290-1303
[3]   Mitigating the Formation of Tetrahedral Zn in Layered Oxides Enables Reversible Lattice Oxygen Redox Triggering by the Na-O-Zn Configuration [J].
Chen, Chen ;
Zhao, Chong ;
Liu, Hui ;
Wu, Xiang ;
Hu, Bei ;
Li, Jingxin ;
Hu, Bingwen ;
Li, Chao .
ACS NANO, 2023, 17 (12) :11406-11413
[4]   Mitigating the Large-Volume Phase Transition of P2-Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium-Ion Batteries [J].
Cheng, Zhiwei ;
Zhao, Bin ;
Guo, Yu-Jie ;
Yu, Lianzheng ;
Yuan, Boheng ;
Hua, Weibo ;
Yin, Ya-Xia ;
Xu, Sailong ;
Xiao, Bing ;
Han, Xiaogang ;
Wang, Peng-Fei ;
Guo, Yu-Guo .
ADVANCED ENERGY MATERIALS, 2022, 12 (14)
[5]   Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS [J].
Daheron, L. ;
Dedryvere, R. ;
Martinez, H. ;
Menetrier, M. ;
Denage, C. ;
Delmas, C. ;
Gonbeau, D. .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :583-590
[6]   Highly Reversible Oxygen-Redox Chemistry at 4.1 V in Na4/7-x[square 1/7Mn6/7]O2 (square: Mn Vacancy) [J].
de Boisse, Benoit Mortemard ;
Nishimura, Shin-ichi ;
Watanabe, Eriko ;
Lander, Laura ;
Tsuchimoto, Akihisa ;
Kikkawa, Jun ;
Kobayashi, Eiichi ;
Asakura, Daisuke ;
Okubo, Masashi ;
Yamada, Atsuo .
ADVANCED ENERGY MATERIALS, 2018, 8 (20)
[7]   Tailoring Electronic Structure to Achieve Maximum Utilization of Transition Metal Redox for High-Entropy Na Layered Oxide Cathodes [J].
Ding, Feixiang ;
Wang, Haibo ;
Zhang, Qinghua ;
Zheng, Lirong ;
Guo, Hao ;
Yu, Pengfei ;
Zhang, Nian ;
Guo, Qiubo ;
Xie, Fei ;
Dang, Rongbin ;
Rong, Xiaohui ;
Lu, Yaxiang ;
Xiao, Ruijuan ;
Chen, Liquan ;
Hu, Yong-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (25) :13592-13602
[8]   Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes [J].
Guo, Yu-Jie ;
Wang, Peng-Fei ;
Niu, Yu-Bin ;
Zhang, Xu-Dong ;
Li, Qinghao ;
Yu, Xiqian ;
Fan, Min ;
Chen, Wan-Ping ;
Yu, Yang ;
Liu, Xiangfeng ;
Meng, Qinghai ;
Xin, Sen ;
Yin, Ya-Xia ;
Guo, Yu-Guo .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides [J].
Hong, Jihyun ;
Gent, William E. ;
Xiao, Penghao ;
Lim, Kipil ;
Seo, Dong-Hwa ;
Wu, Jinpeng ;
Csernica, Peter M. ;
Takacs, Christopher J. ;
Nordlund, Dennis ;
Sun, Cheng-Jun ;
Stone, Kevin H. ;
Passarello, Donata ;
Yang, Wanli ;
Prendergast, David ;
Ceder, Gerbrand ;
Toney, Michael F. ;
Chueh, William C. .
NATURE MATERIALS, 2019, 18 (03) :256-+
[10]   Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes [J].
House, Robert A. ;
Maitra, Urmimala ;
Perez-Osorio, Miguel A. ;
Lozano, Juan G. ;
Jin, Liyu ;
Somerville, James W. ;
Duda, Laurent C. ;
Nag, Abhishek ;
Walters, Andrew ;
Zhou, Ke-Jin ;
Roberts, Matthew R. ;
Bruce, Peter G. .
NATURE, 2020, 577 (7791) :502-+