Bot detection in twitter landscape using unsupervised learning

被引:9
作者
Anwar, Ahmed [1 ]
Yaqub, Ussama [1 ]
机构
[1] Lahore Univ Management Sci, Lahore, Pakistan
来源
PROCEEDINGS OF THE 21ST ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH, DGO 2020 | 2020年
关键词
Twitter; Social Media; Unsupervised learning; Clustering;
D O I
10.1145/3396956.3401801
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this paper is to identify and understand bot activity in twitter discussion. The prevalence of Twitter bots have gained significant limelight recently due to their misuse in influencing public sentiment for political gains. For our analysis, we use Twitter data of 2019 Canadian Elections. We perform principal component analysis and K-means clustering on the data set. Using the results we isolate bots from human accounts.
引用
收藏
页码:329 / 330
页数:2
相关论文
共 7 条
[1]  
[Anonymous], 2019, Twitter
[2]   Weaponized Health Communication: Twitter Bots and Russian Trolls Amplify the Vaccine Debate [J].
Broniatowski, David A. ;
Jamison, Amelia M. ;
Qi, SiHua ;
AlKulaib, Lulwah ;
Chen, Tao ;
Benton, Adrian ;
Quinn, Sandra C. ;
Dredze, Mark .
AMERICAN JOURNAL OF PUBLIC HEALTH, 2018, 108 (10) :1378-1384
[3]  
Chen ZH, 2018, Arxiv, DOI arXiv:1804.05232
[4]   The US 2016 presidential election & Russia?s troll farms [J].
McCombie, Stephen ;
Uhlmann, Allon J. ;
Morrison, Sarah .
INTELLIGENCE AND NATIONAL SECURITY, 2020, 35 (01) :95-114
[5]   Location-based Sentiment Analyses and Visualization of Twitter Election Data [J].
Yaqub, Ussama ;
Sharma, Nitesh ;
Pabreja, Rachit ;
Chun, Soon Ae ;
Atluri, Vijayalakshmi ;
Vaidya, Jaideep .
Digital Government: Research and Practice, 2020, 1 (02)
[6]   Analysis of political discourse on twitter in the context of the 2016 US presidential elections [J].
Yaqub, Ussama ;
Chun, Soon Ae ;
Atluri, Vijayalakshmi ;
Vaidya, Jaideep .
GOVERNMENT INFORMATION QUARTERLY, 2017, 34 (04) :613-626
[7]  
Zhouhan Chen, 2017, Social Informatics. 9th International Conference, SocInfo 2017. Proceedings: LNCS 10540, P501, DOI 10.1007/978-3-319-67256-4_40