An Integrated Machine Learning Framework Identifies Prognostic Gene Pair Biomarkers Associated with Programmed Cell Death Modalities in Clear Cell Renal Cell Carcinoma

被引:3
作者
Chen, Bohong [1 ]
Zhou, Mingguo [1 ]
Guo, Li [1 ]
Huang, Haoxiang [1 ]
Sun, Xinyue [2 ]
Peng, Zihe [3 ]
Wu, Dapeng [1 ]
Chen, Wei [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Urol, Affiliated Hosp 1, Xian 710061, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Neurol, Affiliated Hosp 1, Xian 710061, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Dept Urol, Affiliated Hosp 2, Xian 710004, Shaanxi, Peoples R China
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2024年 / 29卷 / 03期
关键词
programmed cell death; clear cell renal cell carcinoma; machine learning; single-cell RNA-seq; radiomics; PRSS23; INFILTRATING IMMUNE CELLS; CANCER; EXPRESSION; MECHANISMS; RADIOMICS; THERAPIES; APOPTOSIS; BLOCKADE; PREDICT;
D O I
10.31083/j.fbl2903121
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Clear cell renal cell carcinoma (ccRCC) is a common and lethal urological malignancy for which there are no effective personalized therapeutic strategies. Programmed cell death (PCD) patterns have emerged as critical determinants of clinical prognosis and immunotherapy responses. However, the actual clinical relevance of PCD processes in ccRCC is still poorly understood. Methods: We screened for PCD-related gene pairs through single-sample gene set enrichment analysis (ssGSEA), consensus cluster analysis, and univariate Cox regression analysis. A novel machine learning framework incorporating 12 algorithms and 113 unique combinations were used to develop the cell death-related gene pair score (CDRGPS). Additionally, a radiomic score (Rad_Score) derived from computed tomography (CT) image features was used to classify the CDRGPS status as high or low. Finally, we conclusively verified the function of PRSS23 in ccRCC. Results: The CDRGPS was developed through an integrated machine learning approach that leveraged 113 algorithm combinations. CDRGPS represents an independent prognostic biomarker for overall survival and demonstrated consistent performance between training and external validation cohorts. Moreover, CDRGPS showed better prognostic accuracy compared to seven previously published cell death-related signatures. In addition, patients classified as high-risk by CDRGPS exhibited increased responsiveness to tyrosine kinase inhibitors (TKIs), mammalian Target of Rapamycin (mTOR) inhibitors, and immunotherapy. The Rad_Score demonstrated excellent discrimination for predicting high versus low CDRGPS status, with an area under the curve (AUC) value of 0.813 in the Cancer Imaging Archive (TCIA) database. PRSS23 was identified as a significant factor in the metastasis and immune response of ccRCC, thereby validating experimental in vitro results. Conclusions: CDRGPS is a robust and non-invasive tool that has the potential to improve clinical outcomes and enable personalized medicine in ccRCC patients.
引用
收藏
页数:21
相关论文
共 69 条
  • [31] Core signaling pathways in human pancreatic cancers revealed by global genomic analyses
    Jones, Sian
    Zhang, Xiaosong
    Parsons, D. Williams
    Lin, Jimmy Cheng-Ho
    Leary, Rebecca J.
    Angenendt, Philipp
    Mankoo, Parminder
    Carter, Hannah
    Kamiyama, Hirohiko
    Jimeno, Antonio
    Hong, Seung-Mo
    Fu, Baojin
    Lin, Ming-Tseh
    Calhoun, Eric S.
    Kamiyama, Mihoko
    Walter, Kimberly
    Nikolskaya, Tatiana
    Nikolsky, Yuri
    Hartigan, James
    Smith, Douglas R.
    Hidalgo, Manuel
    Leach, Steven D.
    Klein, Alison P.
    Jaffee, Elizabeth M.
    Goggins, Michael
    Maitra, Anirban
    Iacobuzio-Donahue, Christine
    Eshleman, James R.
    Kern, Scott E.
    Hruban, Ralph H.
    Karchin, Rachel
    Papadopoulos, Nickolas
    Parmigiani, Giovanni
    Vogelstein, Bert
    Velculescu, Victor E.
    Kinzler, Kenneth W.
    [J]. SCIENCE, 2008, 321 (5897) : 1801 - 1806
  • [32] Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications
    Lee, Terence Kin-Wah
    Guan, Xin-Yuan
    Ma, Stephanie
    [J]. NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2022, 19 (01) : 26 - 44
  • [33] Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology
    Limkin, E. J.
    Sun, R.
    Dercle, L.
    Zacharaki, E. I.
    Robert, C.
    Reuze, S.
    Schernberg, A.
    Paragios, N.
    Deutsch, E.
    Ferte, C.
    [J]. ANNALS OF ONCOLOGY, 2017, 28 (06) : 1191 - 1206
  • [34] Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework
    Liu, Jinsong
    Shi, Yanjia
    Zhang, Yuxin
    [J]. EPMA JOURNAL, 2023, 14 (2) : 275 - 305
  • [35] Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer
    Liu, Xiaoguang
    Olszewski, Kellen
    Zhang, Yilei
    Lim, Esther W.
    Shi, Jiejun
    Zhang, Xiaoshan
    Zhang, Jie
    Lee, Hyemin
    Koppula, Pranavi
    Lei, Guang
    Zhuang, Li
    You, M. James
    Fang, Bingliang
    Li, Wei
    Metallo, Christian M.
    Poyurovsky, Masha, V
    Gan, Boyi
    [J]. NATURE CELL BIOLOGY, 2020, 22 (04) : 476 - 486
  • [36] Pan-cancer analysis of cuproptosis regulation patterns and identification of mTOR-target responder in clear cell renal cell carcinoma
    Long, Shichao
    Wang, Ya
    Chen, Yuqiao
    Fang, Tianshu
    Yao, Yuanbing
    Fu, Kai
    [J]. BIOLOGY DIRECT, 2022, 17 (01)
  • [37] Resistance to Systemic Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies
    Makhov, Peter
    Joshi, Shreyas
    Ghatalia, Pooja
    Kutikov, Alexander
    Uzzo, Robert G.
    Kolenko, Vladimir M.
    [J]. MOLECULAR CANCER THERAPEUTICS, 2018, 17 (07) : 1355 - 1364
  • [38] Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation
    Malta, Tathiane M.
    Sokolov, Artem
    Gentles, Andrew J.
    Burzykowski, Tomasz
    Poisson, Laila
    Weinstein, John N.
    Kaminska, Bozena
    Huelsken, Joerg
    Omberg, Larsson
    Gevaert, Olivier
    Colaprico, Antonio
    Czerwinska, Patrycja
    Mazurek, Sylwia
    Mishra, Lopa
    Heyn, Holger
    Krasnitz, Alex
    Godwin, Andrew K.
    Lazar, Alexander J.
    Stuart, Joshua M.
    Hoadley, Katherine A.
    Laird, Peter W.
    Noushmehr, Houtan
    Wiznerowicz, Maciej
    [J]. CELL, 2018, 173 (02) : 338 - +
  • [39] Prognostic Impact of the 2009 UICC/AJCC TNM Staging System for Renal Cell Carcinoma with Venous Extension
    Martinez-Salamanca, Juan I.
    Huang, William C.
    Millan, Isabel
    Bertini, Roberto
    Bianco, Fernando J.
    Carballido, Joaquin A.
    Ciancio, Gaetano
    Hernandez, Carlos
    Herranz, Felipe
    Haferkamp, Axel
    Hohenfellner, Markus
    Hu, Brian
    Koppie, Theresa
    Martinez-Ballesteros, Claudio
    Montorsi, Francesco
    Palou, Joan
    Pontes, J. Edson
    Russo, Paul
    Terrone, Carlo
    Villavicencio, Humberto
    Volpe, Alessandro
    Libertino, John A.
    [J]. EUROPEAN UROLOGY, 2011, 59 (01) : 120 - 127
  • [40] Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade
    McGranahan, Nicholas
    Furness, Andrew J. S.
    Rosenthal, Rachel
    Ramskov, Sofie
    Lyngaa, Rikke
    Saini, Sunil Kumar
    Jamal-Hanjani, Mariam
    Wilson, Gareth A.
    Birkbak, Nicolai J.
    Hiley, Crispin T.
    Watkins, Thomas B. K.
    Shafi, Seema
    Murugaesu, Nirupa
    Mitter, Richard
    Akarca, Ayse U.
    Linares, Joseph
    Marafioti, Teresa
    Henry, Jake Y.
    Van Allen, Eliezer M.
    Miao, Diana
    Schilling, Bastian
    Schadendorf, Dirk
    Garraway, Levi A.
    Makarov, Vladimir
    Rizvi, Naiyer A.
    Snyder, Alexandra
    Hellmann, Matthew D.
    Merghoub, Taha
    Wolchok, Jedd D.
    Shukla, Sachet A.
    Wu, Catherine J.
    Peggs, Karl S.
    Chan, Timothy A.
    Hadrup, Sine R.
    Quezada, Sergio A.
    Swanton, Charles
    [J]. SCIENCE, 2016, 351 (6280) : 1463 - 1469