Real-Time Semantic Segmentation of Remote Sensing Images for Land Management

被引:0
作者
Zhang, Yinsheng [1 ,2 ]
Ji, Ru [2 ]
Hu, Yuxiang [1 ,2 ]
Yang, Yulong [2 ]
Chen, Xin [1 ,2 ]
Duan, Xiuxian [1 ,2 ]
Shan, Huilin [1 ,2 ]
机构
[1] Wuxi Univ, Jiangsu Integrated Circuit Reliabil Technol & Test, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
NETWORK; BISENET;
D O I
10.14358/PERS.23-00083R2
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Remote sensing image segmentation is a crucial technique in the field of land management. However, existing semantic segmentation networks require a large number of floating-point operations (FLOPs) and have long run times. In this paper, we propose a dual -path feature aggregation network (DPFANet) specifically designed for the low -latency operations required in land management applications. Firstly, we use four sets of spatially separable convolutions with varying dilation rates to extract spatial features. Additionally, we use an improved version of MobileNetV2 to extract semantic features. Furthermore, we use an asymmetric multi -scale fusion module and dual -path feature aggregation module to enhance feature extraction and fusion. Finally, a decoder is constructed to enable progressive up -sampling. Experimental results on the Potsdam data set and the Gaofen image data set (GID) demonstrate that DPFANet achieves overall accuracy of 92.2% and 89.3%, respectively. The FLOPs are 6.72 giga and the number of parameters is 2.067 million.
引用
收藏
页码:335 / 343
页数:64
相关论文
共 42 条
[1]   A novel method for spectral-spatial classification of hyperspectral images with a high spatial resolution [J].
Akbari, Davood .
ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (23)
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   Unsupervised Domain Adaptation Using Generative Adversarial Networks for Semantic Segmentation of Aerial Images [J].
Benjdira, Bilel ;
Bazi, Yakoub ;
Koubaa, Anis ;
Ouni, Kais .
REMOTE SENSING, 2019, 11 (11)
[4]   Real-Time Semantic Segmentation of Remote Sensing Images Based on Bilateral Attention Refined Network [J].
Cai, Jiali ;
Liu, Chunjuan ;
Yan, Haowen ;
Wu, Xiaosuo ;
Lu, Wanzhen ;
Wang, Xiaoyu ;
Sang, Changlin .
IEEE ACCESS, 2021, 9 :28349-28360
[5]   SBSS: Stacking-Based Semantic Segmentation Framework for Very High-Resolution Remote Sensing Image [J].
Cai, Yuanzhi ;
Fan, Lei ;
Fang, Yuan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[6]   MFANet: A Multi-Level Feature Aggregation Network for Semantic Segmentation of Land Cover [J].
Chen, Bingyu ;
Xia, Min ;
Huang, Junqing .
REMOTE SENSING, 2021, 13 (04) :1-20
[7]  
Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, 10.48550/arXiv.1706.05587]
[8]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[9]   A Multimodal Semantic Segmentation for Airport Runway Delineation in Panchromatic Remote Sensing Images [J].
Datla, Eshreddy ;
Vishnu, Chalavadi ;
Mohan, C. Krishna .
FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
[10]   A novel framework for seamless mosaic of Cartosat-1 DEM scenes [J].
Datla, Rajeshreddy ;
Mohan, C. Krishna .
COMPUTERS & GEOSCIENCES, 2021, 146