Hydrothermally synthesized nickel doped MnO2 nanocrystals for high-performance supercapacitor electrodes

被引:0
作者
Rathod, Vishal. T. [1 ,6 ]
Brahmankar, Neha V. [2 ]
Kumar, Yogesh [3 ]
Mardikar, Satish P. [4 ]
Chaudhari, Gajanan N. [5 ]
Bodade, Anjali B. [1 ]
Uke, Santosh J. [2 ]
机构
[1] Shri Shivaji Sci Coll, Nanosci Res Lab, Amravati 444603, India
[2] SGB Amravati Univ, JDPS Coll, Dept Phys, Amravati, Maharashtra, India
[3] Govt Coll, Dept Phys, Sec 12, Palwal 121102, Haryana, India
[4] SGB Amravati Univ, SRS Coll, Dept Chem, Amravati, India
[5] Mahatma Fule Arts Commerce & Sitaramji Chaudhari S, Amravati 444906, MS, India
[6] Bhawabhuti Mahavidyalaya, Dept Chem, Amgaon 441902, MS, India
关键词
MnO2; Electrochemical; Specific capacitance; Nickel; Triethanolamine (TEA)-ethoxylate; Supercapacitor; ENHANCED ELECTROCHEMICAL PERFORMANCE; ENERGY DENSITY; COMPOSITE; OXIDE; NANOCOMPOSITES; ALPHA-MNO2; BEHAVIOR; ARRAYS;
D O I
10.1016/j.inoche.2024.112643
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Achieving superior electrochemical performance toward high energy storage in MnO 2 based supercapacitor is a crucial research objective. However, the limited electrical conductivity of MnO 2 results in poor charge - discharge kinetics and high internal resistance, consequently restricting the overall device performance, particularly at high rates. Herein present study, pristine and Ni-doped MnO 2 nanocrystals were synthesized using facile triethanolamine (TEA)-ethoxylate-assisted hydrothermal synthesis. The structural and morphological characteristics of Ni-doped MnO 2 were analyzed using various physicochemical characterization techniques viz. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared spectroscopy (FTIR), Brunauer Emmett Teller-Barrett Joyner Halenda (BET-BJH) surface analysis, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Using a 1 mol/L Na 2 SO 4 aqueous electrolyte, an electrochemical analysis of the fabricated electrodes made from pristine and Ni-doped MnO 2 was performed out using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS). The results revealed that, among the studied electrodes, the electrodes fabricated from 4 % Ni-doped MnO 2 exhibited a high specific capacitance of 432. 5 Fg(-1) at a scan rate of 5 mVs(-1) and excellent cyclic stability of 96.56 % over 2000 cycles at a high current density of 30 mAcm(-2). The 4 % Ni-doped MnO 2 showed high specific capacitance and energy density compared to pristine and other (2 % and 6 %) Ni-doped MnO 2 which can be attributed to the proper doping and high electrical conductivity. Furthermore, the as-fabricated asymmetric supercapacitor device using a 4 % Ni-doped MnO 2 sample as the positive electrode and activated charcoal (AC) as the negative electrode shows a maximum specific capacitance of 136.6 Fg(-1) at a current density of 2 mAcm(-2). The present study highlights the significance of the surfactant-assisted hydrothermal synthesis method and promising potential of the Ni-doped MnO 2 as a high-energy - density electrode material.
引用
收藏
页数:13
相关论文
共 87 条
[1]  
Adelkhani H, 2008, J MATER SCI TECHNOL, V24, P857
[2]   Enhanced electrochemical performance of facilely synthesized cobalt doped cubic NiO nanoflakes for supercapacitor application [J].
Ashok, Shyamli C. ;
Vazhayil, Ashalatha ;
Thomas, Jasmine ;
Thomas, Nygil .
JOURNAL OF ENERGY STORAGE, 2022, 55
[3]   MnO2 core-shell type materials for high-performance supercapacitors: A short review [J].
Bhat, T. S. ;
Jadhav, S. A. ;
Beknalkar, S. A. ;
Patil, S. S. ;
Patil, P. S. .
INORGANIC CHEMISTRY COMMUNICATIONS, 2022, 141
[4]   Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications [J].
Bredar, Alexandria R. C. ;
Chown, Amanda L. ;
Burton, Andricus R. ;
Farnum, Byron H. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) :66-98
[5]   Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor [J].
Brousse, Thierry ;
Taberna, Pierre-Louis ;
Crosnier, Olivier ;
Dugas, Romain ;
Guillemet, Philippe ;
Scudeller, Yves ;
Zhou, Yingke ;
Favier, Frederic ;
Belanger, Daniel ;
Simon, Patrice .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :633-641
[6]   Electro-Catalytic Behavior of Mg-Doped ZnO Nano-Flakes for Oxidation of Anti-Inflammatory Drug [J].
Bukkitgar, Shikandar D. ;
Shetti, Nagaraj P. ;
Kulkarni, Raviraj M. ;
Reddy, Kakarla Raghava ;
Shukla, Shyam S. ;
Saji, Viswanathan S. ;
Aminabhavi, Tejraj M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (09) :B3072-B3078
[7]   Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes [J].
Chaikittisilp, Watcharop ;
Hu, Ming ;
Wang, Hongjing ;
Huang, Hou-Sheng ;
Fujita, Taketoshi ;
Wu, Kevin C. -W. ;
Chen, Lin-Chi ;
Yamauchi, Yusuke ;
Ariga, Katsuhiko .
CHEMICAL COMMUNICATIONS, 2012, 48 (58) :7259-7261
[8]   Electrochemical Impedance Spectroscopy [J].
Chang, Byoung-Yong ;
Park, Su-Moon .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 3, 2010, 3 :207-229
[9]  
Chang J, 2013, ADV FUNCT MATER, V23, P5074, DOI [10.1002/adfm.201301851, 10.1002/adfm201301851]
[10]   Synthesis and Characterization of CuO-NiO Nanocomposites for Electrochemical Supercapacitors [J].
Chatterjee, Sujit ;
Ray, Apurba ;
Mandal, Manas ;
Das, Sachindranath ;
Bhattacharya, Swapan Kumar .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2020, 29 (12) :8036-8048