Cobalt-catalyzed soft-hard carbon composite anodes for enhanced sodium-ion storage

被引:4
作者
Zhao, Pei [1 ]
Shi, Gejun [1 ]
Hu, Lulu [1 ]
Zhang, Zongliang [1 ]
Ding, Kun [1 ]
Meng, Xinjing [1 ]
Wang, Baofeng [1 ]
机构
[1] Shanghai Univ Elect Power, Shanghai Key Lab Mat Protect & Adv Mat Elect Power, Shanghai 200090, Peoples R China
基金
中国国家自然科学基金;
关键词
Catalytic graphitization; Biomass-derived hard carbon; Sodium-ion battery; Initial coulombic efficiency; MECHANISM; NA; MORPHOLOGY; INSIGHTS; BIOMASS;
D O I
10.1016/j.ssi.2024.116555
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbon is expected to be a high-capacity anode material for sodium-ion batteries (SIBs). However, its Na+ storage performance, especially the low discharge capacity, remains a great challenge. Herein, the soft-hard carbon composite anodes with high degree of graphitization were synthesized via low-temperature pyrolysis (at only 900 degrees C) of Cobalt-catalyzed perylene tetracarboxylic dianhydride (PTCDA-Co) and cotton, with subsequent removal of cobalt. The composite resulting from a 2:3 mass ratio of soft to hard carbon exhibits a good discharge capacity of 355.81 mAh g(-1) at a current density of 50 mA g(-1) and an enhanced initial Coulombic efficiency (ICE) of 81.41%. The enhanced electrochemical storage performance of cotton is attributed to the introduction of PTCDA-Co, which creates low-defect graphitic layer, hierarchical porous channels, and carbon shielding coating on hard carbon.
引用
收藏
页数:8
相关论文
共 58 条
[1]   Solid Electrolyte Interphases on Sodium Metal Anodes [J].
Bao, Changyuan ;
Wang, Bo ;
Liu, Peng ;
Wu, Hao ;
Zhou, Yu ;
Wang, Dianlong ;
Liu, Huakun ;
Dou, Shixue .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (52)
[2]   Regulating the Interlayer Spacings of Hard Carbon Nanofibers Enables Enhanced Pore Filling Sodium Storage [J].
Cai, Congcong ;
Chen, Yongan ;
Hu, Ping ;
Zhu, Ting ;
Li, Xinyuan ;
Yu, Qiang ;
Zhou, Liang ;
Yang, Xiaoyu ;
Mai, Liqiang .
SMALL, 2022, 18 (06)
[3]   Functional carbon materials processed by NH3 plasma for advanced full-carbon sodium-ion capacitors [J].
Cai, Peng ;
Momen, Roya ;
Li, Mengyu ;
Tian, Ye ;
Yang, Liwen ;
Zou, Kangyu ;
Deng, Xinglan ;
Wang, Baowei ;
Hou, Hongshuai ;
Zou, Guoqiang ;
Ji, Xiaobo .
CHEMICAL ENGINEERING JOURNAL, 2021, 420
[4]   Insight into the rapid sodium storage mechanism of the fiber-like oxygen-doped hierarchical porous biomass derived hard carbon [J].
Chen, Chen ;
Huang, Ying ;
Meng, Zhuoyue ;
Zhang, Jiaxin ;
Lu, Mengwei ;
Liu, Panbo ;
Li, Tiehu .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 588 :657-669
[5]   Understanding of the sodium storage mechanism in hard carbon anodes [J].
Chen, Xiaoyang ;
Liu, Changyu ;
Fang, Yongjin ;
Ai, Xinping ;
Zhong, Faping ;
Yang, Hanxi ;
Cao, Yuliang .
CARBON ENERGY, 2022, 4 (06) :1133-1150
[6]   Electrochemical storage mechanism of sodium in carbon materials: A study from soft carbon to hard carbon [J].
Cheng, Dejian ;
Zhou, Xiuqing ;
Hu, Huanying ;
Li, Zhenghui ;
Chen, Jun ;
Miao, Lei ;
Ye, Xiaoji ;
Zhang, Haiyan .
CARBON, 2021, 182 :758-769
[7]   Realizing Improved Sodium-Ion Storage by Introducing Carbonyl Groups and Closed Micropores into a Biomass-Derived Hard Carbon Anode [J].
Deng, Wentao ;
Cao, Yongjie ;
Yuan, Guangming ;
Liu, Gonggang ;
Zhang, Xiang ;
Xia, Yongyao .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (40) :47728-47739
[8]   Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry [J].
Dou, Xinwei ;
Hasa, Ivana ;
Saurel, Damien ;
Vaalma, Christoph ;
Wu, Liming ;
Buchholz, Daniel ;
Bresser, Dominic ;
Komaba, Shinichi ;
Passerini, Stefano .
MATERIALS TODAY, 2019, 23 :87-104
[9]   Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries [J].
Fan, Ling ;
Lu, Bingan .
SMALL, 2016, 12 (20) :2783-2791
[10]   Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism [J].
Feng, Yiming ;
Tao, Lei ;
Zheng, Zhifeng ;
Huang, Haibo ;
Lin, Feng .
ENERGY STORAGE MATERIALS, 2020, 31 :274-309