Semidirect products of digroups and skew braces

被引:2
作者
Facchini, Alberto [1 ]
Pompili, Mara [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, I-35121 Padua, Italy
[2] Karl Franzens Univ Graz, Dept Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Brace; skew brace; Yang-Baxter equation; semidirect product; com mutator; action;
D O I
10.36045/j.bbms.230825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the notions of action and semidirect product for digroups and left skew braces.
引用
收藏
页码:40 / 53
页数:14
相关论文
共 8 条
[1]   Aspects of the category SKB of skew braces [J].
Bourn, Dominique ;
Facchini, Alberto ;
Pompili, Mara .
COMMUNICATIONS IN ALGEBRA, 2023, 51 (05) :2129-2143
[2]  
DRINFELD VG, 1986, P INT C MATH, P798
[3]   Abstractly constructed prime spectra [J].
Facchini, Alberto ;
Finocchiaro, Carmelo Antonio ;
Janelidze, George .
ALGEBRA UNIVERSALIS, 2022, 83 (01)
[4]   SKEW BRACES AND THE YANG BAXTER EQUATION [J].
Guarnieri, L. ;
Vendramin, L. .
MATHEMATICS OF COMPUTATION, 2017, 86 (307) :2519-2534
[5]   The wreath product of semiprime skew braces is semiprime [J].
Kinnear, Patrick I. .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) :533-537
[6]   Extensions and Well's type exact sequence of skew braces [J].
Rathee, Nishant .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (01)
[7]   Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation [J].
Rump, Wolfgang .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2008, 7 (04) :471-490
[8]   On skew braces (with an appendix by N. Byott and L. Vendramin) [J].
Smoktunowicz, Agata ;
Vendramin, Leandro ;
Byott, N. .
JOURNAL OF COMBINATORIAL ALGEBRA, 2018, 2 (01) :47-86