Anti-noise computational ghost imaging based on wavelet threshold denoising

被引:0
作者
Fan, Yiran [1 ]
Bai, Yanfeng [1 ]
Fu, Qin [2 ]
Zhang, Rong [1 ]
Zhou, Liyu [1 ]
Zhu, Xiaohui [1 ]
Zou, Xuanpengfan [1 ]
Fu, Xiquan [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[2] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Computational ghost imaging; Wavelet threshold denoising; Anti-noise;
D O I
10.1016/j.optcom.2024.130684
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Noise can inevitably affect imaging quality of optical imaging system. In this paper, a method of computational ghost imaging (CGI) with better anti-noise performance is proposed by using wavelet threshold denoising (WTD). The simulation and experimental results show that this method exhibits better robustness against both the light source noise and the path noise. To explain this phenomenon, the decline rate of the correlation coefficients between speckle patterns (CCSP) under different noise levels are analyzed. As a post-processing method, our method is simple to implement and is applicable to both random speckle CGI and orthogonal modulated CGI, potentially broadening application prospects in practical applications of ghost imaging.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Compressed computations using wavelets for hidden Markov models with continuous observations [J].
Bello, Luca ;
Wiedenhoeft, John ;
Schliep, Alexander .
PLOS ONE, 2023, 18 (06)
[2]   Ghost imaging with a single detector [J].
Bromberg, Yaron ;
Katz, Ori ;
Silberberg, Yaron .
PHYSICAL REVIEW A, 2009, 79 (05)
[3]   Computational ghost imaging for remote sensing [J].
Erkmen, Baris I. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2012, 29 (05) :782-789
[4]   Differential Ghost Imaging [J].
Ferri, F. ;
Magatti, D. ;
Lugiato, L. A. ;
Gatti, A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[5]   Single pixel imaging based on semi-continuous wavelet transform* [J].
Gao, Chao ;
Wang, Xiaoqian ;
Wang, Shuang ;
Gou, Lidan ;
Feng, Yuling ;
Jin, Guangyong ;
Yao, Zhihai .
CHINESE PHYSICS B, 2021, 30 (07)
[6]   Denoising of an ultraviolet light received signal based on improved wavelet transform threshold and threshold function [J].
Guo, Hua ;
Yue, Leihui ;
Song, Peng ;
Tan, Yumei ;
Zhang, Lijian .
APPLIED OPTICS, 2021, 60 (28) :8983-8990
[7]   Contrast and resolution in direct Fresnel diffraction phase-contrast imaging with partially coherent x-ray source [J].
Han, SS ;
Yu, H ;
Cheng, J ;
Gao, C ;
Luo, ZL .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10) :3146-3151
[8]   Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects [J].
Hu, Hong-Kang ;
Sun, Shuai ;
Lin, Hui-Zu ;
Jiang, Liang ;
Liu, Wei-Tao .
OPTICS EXPRESS, 2020, 28 (25) :37284-37293
[9]   Remaining useful life prediction of lithium-ion batteries based on wavelet denoising and transformer neural network [J].
Hu, Wangyang ;
Zhao, Shaishai .
FRONTIERS IN ENERGY RESEARCH, 2022, 10
[10]   Analysis of the allowable maximum amplitude of random jitter in computational ghost imaging [J].
Jiang, T. O. N. G. J., I ;
Bai, Y. A. N. F. E. N. G. ;
Tan, W. E., I ;
Zhu, X. I. A. O. H. U. I. ;
Liang, X. I. A. O. Q. I. A. N. ;
Jin, H. A. N. G. ;
Fu, Q. I. N. ;
Fu, X. I. Q. U. A. N. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (09) :1616-1620