Optimizing photovoltaic systems: A meta-optimization approach with GWO-Enhanced PSO algorithm for improving MPPT controllers

被引:51
作者
Aguila-Leon, Jesus [1 ,2 ]
Vargas-Salgado, Carlos [2 ,3 ]
Diaz-Bello, Dacil [2 ]
Montagud- Montalva, Carla [4 ]
机构
[1] Univ Guadalajara, Dept Water & Energy Studies, Guadalajara, Mexico
[2] Univ Politecn Valencia UPV, Inst Univ Invest Ingn Energet, Valencia, Spain
[3] Univ Politecn Valencia UPV, Dept Ingn Electr, Valencia, Spain
[4] Univ Politecn Valencia UPV, Dept Termodinam Aplicada, Valencia, Spain
关键词
Photovoltaic systems; Meta; -optimization; Power converters; Grey wolf optimizer; Particle swarm optimization; Maximum power point tracking; RENEWABLE ENERGY; POWER;
D O I
10.1016/j.renene.2024.120892
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Environmental factors and load conditions influence the efficiency of power converters - key elements in Photovoltaic (PV) systems. This study employs optimization algorithms to fine-tune the converter's operation, focusing on metaoptimization, an algorithm increasing attention in recent research. The analysis introduces the Grey Wolf Optimizer (GWO) to enhance the Particle Swarm Optimization (PSO) algorithm. The optimized PSO algorithm is integrated into a PV system's Maximum Power Point Tracking (MPPT) controller. Implemented in MATLAB/Simulink, this approach is validated by combining measured data and simulation scenarios: 1. staggered vs 2. real irradiation changes. The results underscore the efficacy of the GWO-optimized PSO MPPT algorithm in enhancing the MPPT controller's performance. In Scenario 1, the GWO-optimized PSO algorithm demonstrated 9.1 % higher energy generation than the Incremental Conductance MPPT, 19.8 % more than the PSO MPPT, and 20.7 % more than the Perturb and Observe MPPT. Scenario 2 showed the superior performance of the GWO-optimized PSO MPPT, showcasing a 15.36 % increase in generation over the PSO and a 21.62 % improvement compared to the Perturb and Observe MPPT, with a 4.74 % advantage over the Incremental Conductance MPPT. The results highlight the GWO-optimized PSO MPPT's robustness under diverse conditions, emphasizing its potential PV technologies by optimizing MPPT controllers.
引用
收藏
页数:14
相关论文
共 44 条
[1]   Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms [J].
Aguila-Leon, Jesus ;
Vargas-Salgado, Carlos ;
Chinas-Palaciosa, Cristian ;
Diaz-Bello, Dacil .
EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
[2]   Energy Management Model for a Standalone Hybrid Microgrid through a Particle Swarm Optimization and Artificial Neural Networks Approach [J].
Aguila-Leon, Jesus ;
Vargas-Salgado, Carlos ;
Chinas-Palacios, Cristian ;
Diaz-Bello, Dacil .
ENERGY CONVERSION AND MANAGEMENT, 2022, 267
[3]  
Aguila-Leon J, 2021, Advances in Science Technology and Engineering Systems Journal, V6, P619, DOI [10.25046/aj060167, DOI 10.25046/AJ060167, 10.25046/AJ060167]
[4]   Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review [J].
Al-Shahri, Omar A. ;
Ismail, Firas B. ;
Hannan, M. A. ;
Lipu, M. S. Hossain ;
Al-Shetwi, Ali Q. ;
Begum, R. A. ;
Al-Muhsen, Nizar F. O. ;
Soujeri, Ebrahim .
JOURNAL OF CLEANER PRODUCTION, 2021, 284
[5]  
[Anonymous], SOLAR PV ANAL IEA
[6]  
[Anonymous], MATLAB - El lenguaje del calculo tecnico
[7]   The role of energy communities in electricity grid balancing: A flexible tool for smart grid power distribution optimization [J].
Barone, G. ;
Buonomano, A. ;
Forzano, C. ;
Palombo, A. ;
Russo, G. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 187
[8]   Design optimization of a solar system integrated double-skin fagade for a clustered housing unit [J].
Barone, G. ;
Vassiliades, C. ;
Elia, C. ;
Savvides, A. ;
Kalogirou, S. .
RENEWABLE ENERGY, 2023, 215
[9]   Limitations, challenges, and solution approaches in grid-connected renewable energy systems [J].
Basit, Muhammad Abdul ;
Dilshad, Saad ;
Badar, Rabiah ;
Rehman, Syed Muhammad Sami Ur .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (06) :4132-4162
[10]   Critical Review on PV MPPT Techniques: Classical, Intelligent and Optimisation [J].
Bollipo, Ratnakar Babu ;
Mikkili, Suresh ;
Bonthagorla, Praveen Kumar .
IET RENEWABLE POWER GENERATION, 2020, 14 (09) :1433-1452