A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection

被引:2
作者
Jiao, Runhai [1 ]
Han, Zhuoting [1 ]
Liu, Xuan [2 ]
Zhou, Changyu [1 ]
Du, Min [2 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
[2] Hunan Univ, Sch Elect & Informat Engn, Changsha 410000, Peoples R China
关键词
Forecasting; Wind power generation; Predictive models; Wind speed; Load modeling; Data models; Wind farms; Wind power forecasting; machine learning; gradient-based attack; high-stealth attack; attack direction judgment; NEURAL-NETWORK; PREDICTION; SECURITY; GENERATION; MODEL; LOAD;
D O I
10.1109/TSG.2023.3325390
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or decrease forecasting results, ignoring the number of attacks and attack effect. In this paper, an attack sample selection model is proposed to select vulnerability sample points for attack in order to reduce the number of attacks. At the same time, an attack direction judgment model is developed to launch the attack in the correct gradient direction to maximize the attack effect. Moreover, the effectiveness of the proposed approach is validated on two public wind power datasets and nine typical machine learning based forecasting models such as ANN, ENN, RNN, LSTM, GRU, BiLSTM, BiGRU, CNN and TCN. Compared with the existing gradient-based attack methods, the proposed attack method increases MAPE values of the nine models by about 9% on average while improving the attack concealment.
引用
收藏
页码:3178 / 3192
页数:15
相关论文
共 50 条
  • [31] A Multi-Timescale Wind Power Forecasting Method Based on Selection of Similar Days
    Wang Shen-zhe
    Gao Shan
    Zhao Xin
    Zhang Ningyu
    2016 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION (CICED), 2016,
  • [32] Wind Power Forecasting Considering Wind Turbine Condition
    Pei Yan
    Qian Zheng
    Chen Niya
    2015 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT ASIA), 2015,
  • [33] Wind power forecasting based on a machine learning model: considering a coastal wind farm in Zhejiang as an example
    Gu, Guangcheng
    Li, Ningbo
    Pan, Yaying
    Jin, Chonghui
    Li, Yabin
    Fang, Rongjie
    Chen, Kaibo
    Wang, Qi
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (11) : 2551 - 2558
  • [34] Simulation of Wind-Battery Microgrid Based on Short-Term Wind Power Forecasting
    Genikomsakis, Konstantinos N.
    Lopez, Sergio
    Dallas, Panagiotis I.
    Ioakimidis, Christos S.
    APPLIED SCIENCES-BASEL, 2017, 7 (11):
  • [35] Stratification-Based Wind Power Forecasting in a High-Penetration Wind Power System Using a Hybrid Model
    Wu, Yuan-Kang
    Su, Po-En
    Hong, Jing-Shan
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2016, 52 (03) : 2016 - 2030
  • [36] Stochastic Optimal Power Flow for Power Systems Considering Wind Farms Based on the Stochastic Collocation Method
    Xia, Bingqing
    Chen, Yuwei
    Yang, Wenbin
    Chen, Qing
    Wang, Xiaohe
    Min, Kuan
    IEEE ACCESS, 2022, 10 : 44023 - 44032
  • [37] Ultra-Short-Term Wind Power Forecasting Based on the Strategy of "Dynamic Matching and Online Modeling"
    Li, Yuhao
    Wang, Han
    Yan, Jie
    Ge, Chang
    Han, Shuang
    Liu, Yongqian
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2025, 16 (01) : 107 - 123
  • [38] A Wind Speed Correction Method Based on Modified Hidden Markov Model for Enhancing Wind Power Forecast
    Li, Menglin
    Yang, Ming
    Yu, Yixiao
    Lee, Wei-Jen
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2022, 58 (01) : 656 - 666
  • [39] Deterministic and Probabilistic Wind Power Forecasting Using a Hybrid Method
    Huang, Chao-Ming
    Huang, Yann-Chang
    Haung, Kun-Yang
    Chen, Shin-Ju
    Yang, Seng-Pei
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2017, : 400 - 405
  • [40] Wind power prediction considering the layout of the wind turbines and wind direction
    ChenXiang
    Wang Fu-jun
    Liu Tian-qi
    Chen Zhen-huan
    Li Xiao-hu
    Guan Tie-ying
    2012 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2012,