Assessment of uranium nitride interatomic potentials

被引:4
作者
AbdulHameed, Mohamed [1 ]
Beeler, Benjamin [1 ,2 ]
Galvin, Conor O. T. [3 ]
Cooper, Michael W. D. [3 ]
机构
[1] North Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA
[2] Idaho Natl Lab, Idaho Falls, ID 83415 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
Uranium nitride; Thermophysical properties; Molecular dynamics; Phonons; Point defects; MATERIAL PROPERTY CORRELATIONS; MOLECULAR-DYNAMICS; THERMODYNAMIC PROPERTIES; ATOMISTIC SIMULATION; DEBYE TEMPERATURE; HEAT-CAPACITY; ELASTIC-CONSTANTS; POINT-DEFECTS; X-RAY; MONONITRIDE;
D O I
10.1016/j.jnucmat.2024.155247
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Uranium mononitride (UN) is a promising nuclear fuel due to its high fissile density, high thermal conductivity, and suitability for reprocessing. In this study, two uranium nitride interatomic potentials are assessed: Tseplyaev and Starikov's angular-dependent potential and Kocevski et al.'s embedded atom model potential. Predictions of the thermophysical and elastic properties of UN, UN 2 , and a- and P-U 2 N 3 computed using both potentials are assessed and compared to available experimental data. The Tseplyaev potential performs better with the energetic aspects of UN, e.g., specific heat capacity and point defect formation energies, whereas the Kocevski potential performs better with the structural aspects of UN, e.g., thermal expansion as well as with the elastic properties. The reasons why the Kocevski potential underestimates the UN specific heat are explained by examining the UN phonon properties modeled using both potentials. The Kocevski potential shows better identification of the mechanical stability ranges of UN, UN 2 , and a- and P-U 2 N 3 , reasonably predicting the melting point of UN and predicting stable structures for UN 2 and a- and P-U 2 N 3 . On the other hand, the Tseplyaev potential predicts a premature phase change of both UN and UN 2 and cannot stabilize a- nor P-U 2 N 3 . However, the Kocevski potential cannot predict a stable a-U phase and is thus not suitable for the calculation of formation energies for non-stoichiometric point defects.
引用
收藏
页数:16
相关论文
共 97 条
[1]   Quantum oscillations of nitrogen atoms in uranium nitride [J].
Aczel, A. A. ;
Granroth, G. E. ;
MacDougall, G. J. ;
Buyers, W. J. L. ;
Abernathy, D. L. ;
Samolyuk, G. D. ;
Stocks, G. M. ;
Nagler, S. E. .
NATURE COMMUNICATIONS, 2012, 3
[2]   Mechanical properties at sub-microscale and macroscale of polycrystalline uranium mononitride [J].
Adachi, Jun ;
Kurosaki, Ken ;
Uno, Masayoshi ;
Yamanaka, Shinsuke ;
Takano, Masahide ;
Akabori, Mitsuo ;
Minato, Kazuo .
JOURNAL OF NUCLEAR MATERIALS, 2009, 384 (01) :6-11
[3]   Simulations of melting of polyatomic solids and nanoparticles [J].
Alavi, Saman ;
Thompson, Donald L. .
MOLECULAR SIMULATION, 2006, 32 (12-13) :999-1015
[4]   Visualizing defect energetics [J].
Anand, Shashwat ;
Male, James P. ;
Wolverton, Chris ;
Snyder, G. Jeffrey .
MATERIALS HORIZONS, 2021, 8 (07) :1966-1975
[6]  
Ashcroft N., 1976, Solid State Physics
[7]   A physical model for evaluating uranium nitride specific heat [J].
Baranov, V. G. ;
Devyatko, Yu. N. ;
Tenishev, A. V. ;
Khlunov, A. V. ;
Khomyakov, O. V. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 434 (1-3) :248-251
[8]  
Blundell KM Blundell S., 2010, CONCEPTS THERMAL PHY
[9]   DFT calculations of point defects on UN(001) surface [J].
Bocharov, D. ;
Gryaznov, D. ;
Zhukovskii, Yu. F. ;
Kotomin, E. A. .
SURFACE SCIENCE, 2011, 605 (3-4) :396-400
[10]  
Boer KW., 2018, SEMICONDUCTOR PHYS