共 50 条
Robust and multifunctional MXene/rGO composite aerogels toward highly efficient solar-driven interfacial evaporation and wastewater treatment
被引:12
|作者:
Zhang, Guangfa
[1
]
Zhang, Yuekang
[1
]
Jiang, Jingxian
[2
]
机构:
[1] Qingdao Univ Sci & Technol, Sch Polymer Sci & Engn, Key Lab Rubber Plast, Shandong Prov Key Lab Rubber Plast,Minist Educ, Qingdao 266042, Peoples R China
[2] Shanghai Inst Technol, Sch Chem & Environm Engn, Shanghai 201418, Peoples R China
关键词:
MXene;
Graphene oxide;
Aerogel;
Solar -driven interfacial evaporation;
Wastewater treatment;
ADSORPTION;
CHITOSAN;
D O I:
10.1016/j.seppur.2024.127588
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
Given the ever-growing global water resource crisis, exploiting multifunctional materials featuring with high interfacial solar steam generation efficiency and good purification capability to achieving seawater desalination and wastewater treatment simultaneously are highly desired, yet it still remains a huge challenge to date. Herein, robust and multifunctional MXene/rGO (MRGA) and polydopamine & chitosan @ MRGA (CS&PDA@MRGA, CPM) three-dimensional composite aerogels with distinct interconnected cellular architecture were developed via a facile ice template-assisted chemical reduction self-assembly technology and subsequent sequential deposition modification. Due to the favorable graphene oxide-assisted assembly behavior, the resultant aerogels displayed a desirable mechanical robustness along with an excellent lightweight property. Benefiting from the strong electrostatic interaction deriving from aerogel surface moieties and dye molecules, MRGA-12 exhibited a prominent adsorption capability towards various dyes and achieved a superb adsorption capacity of up to 396.05 mg/g for malachite green (MG). Moreover, by virtue of the synergistic effect between the intentionally regulated low reduction degree of rGO and the integration of PDA and CS, CPM-12 achieved a dramatically reduced evaporation enthalpy of water from 2256 to 1617.18 J/g. Accordingly, this distinct feature resulted in an extraordinary solar-driven interfacial evaporation performance with a remarkable evaporation rate of 1.86 kg/m2/h and a high evaporation efficiency of 83.28 % under 1 sun illumination. Therefore, together with the terrific oil/water separation capability, these novel MXene-based aerogels hold a great potential for highperformance solar-driven interfacial evaporation and wastewater treatment.
引用
收藏
页数:14
相关论文