YOLO-Based Object Detection in Industry 4.0 Fischertechnik Model Environment

被引:1
作者
Schneidereit, Slavomira [1 ]
Yarahmadi, Ashkan Mansouri [2 ]
Schneidereit, Toni [2 ]
Breuss, Michael [2 ]
Gebauer, Marc [1 ]
机构
[1] BTU Cottbus Senftenberg, Chair Automat Technol, Pl Deutsch Einheit 1, D-03046 Cottbus, Germany
[2] BTU Cottbus Senftenberg, Inst Math, Pl Deutsch Einheit 1, D-03046 Cottbus, Germany
来源
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023 | 2024年 / 823卷
关键词
Object detection; Image augmentation; Classification; YOLO; Fischertechnik industry; Industry; 4.0;
D O I
10.1007/978-3-031-47724-9_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we extensively explore the suitability of YOLO architectures to monitor the process flow across a Fischertechnik Industry 4.0 application. Specifically, different YOLO architectures in terms of size and complexity design along with different prior-shapes assignment strategies are adopted. To simulate the real world factory environment, we prepared a rich dataset augmented with different distortions that highly enhance and in some cases degrade our image qualities. The degradation is performed to account for environmental variations and enhancements opt to compensate the color correlations that we face while preparing our dataset. The analysis of our conducted experiments shows the effectiveness of the presented approach evaluated using different measures along with the training and validation strategies that we tailored to tackle the unavoidable color correlations that the problem at hand inherits by nature.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 42 条
[1]   Learning factories for future oriented research and education in manufacturing [J].
Abele, Eberhard ;
Chryssolouris, George ;
Sihn, Wilfried ;
Metternich, Joachim ;
ElMaraghy, Hoda ;
Seliger, Guenther ;
Sivard, Gunilla ;
ElMaraghy, Waguih ;
Hummel, Vera ;
Tisch, Michael ;
Seifermann, Stefan .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2017, 66 (02) :803-826
[2]  
[Anonymous], Ultralytics github
[3]  
Benjdira B., 2018, Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3
[4]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, DOI 10.48550/ARXIV.2004.10934, 10.48550/arXiv.2004.10934]
[5]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136
[8]  
Girshick R., 2013, ICCV
[9]  
Gruger J., 2022, Sensorstream: An xes extension for enriching event logs with iot-sensor data
[10]  
Gu CH, 2009, PROC CVPR IEEE, P1030, DOI 10.1109/CVPRW.2009.5206727