Pathways and mechanism of MRTX1133 binding to KRAS G12D elucidated by molecular dynamics simulations and Markov state models

被引:4
作者
Tu, Gao [1 ,2 ]
Gong, Yaguo [2 ]
Yao, Xiaojun [3 ]
Liu, Qing [4 ]
Xue, Weiwei [5 ]
Zhang, Rong [1 ]
机构
[1] Army Med Univ, Affiliated Hosp 2, Dept Pharm, 183 Xinqiao Rd, Chongqing 400037, Peoples R China
[2] Macau Univ Sci & Technol, Macau Inst Appl Res Med & Hlth, Dr Nehers Biophys Lab Innovat Drug Discovery, State Key Lab Qual Res Chinese Med, Taipa 999078, Macau, Peoples R China
[3] Macao Polytech Univ, Fac Appl Sci, Ctr Artificial Intelligence Driven Drug Discovery, Macau 999078, Peoples R China
[4] Univ Sci & Technol China, Suzhou Inst Adv Res, Suzhou, Peoples R China
[5] Chongqing Univ, Sch Pharmaceut Sci, Chongqing 401331, Peoples R China
关键词
KRAS G12D; MRTX1133; inhibitor; Molecular dynamics simulation; LIGAND-BINDING; SOFTWARE; EFFICACY;
D O I
10.1016/j.ijbiomac.2024.133374
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
KRAS G12D is the most common oncogenic mutation identified in several types of cancer. Therefore, design of inhibitors targeting KRAS G12D represents a promising strategy for anticancer therapy. MRTX1133 is a highly potent inhibitor (approximate experiment Kd approximate to 0.0002 nM) of KRAS G12D and is currently in Phase 1/2 study, however, pathways of the compound binding to KRAS G12D has remained unknown, and the mechanism underlying the complicated dynamic process are challenging to capture experimentally, which hinder the structurebased anti-cancer drug design. Here, using MRTX1133 as a probe, unbiased molecular dynamics (MD) was used to simulate the process of MRTX1133 spontaneously binding to KRAS G12D. In six of 42 independent MD simulation (a total of 99 mu s), MRTX1133 was observed to successfully associate with KRAS G12D. The kinetically metastable states refer to the potential pathways of MRTX1133 binding to KRAS G12D were revealed by Markov state models (MSM) analysis. Additionally, 8 key residues that are essential for MRTX1133 recognition and tight binding at the preferred low energy states were identified by MM/GBSA analysis. In sum, this study provides a new perspective on understanding the pathways and mechanism of MRTX1133 binding to KRAS G12D.
引用
收藏
页数:8
相关论文
共 60 条
[1]  
[Anonymous], 2010, Versio1 1.3r1
[2]   Exploring ligand binding pathways on proteins using hypersound-accelerated molecular dynamics [J].
Araki, Mitsugu ;
Matsumoto, Shigeyuki ;
Bekker, Gert-Jan ;
Isaka, Yuta ;
Sagae, Yukari ;
Kamiya, Narutoshi ;
Okuno, Yasushi .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   Targeting the undruggable oncogenic KRAS: the dawn of hope [J].
Asimgil, Hande ;
Ertetik, Utku ;
Cevik, Nedim Can ;
Ekizce, Menar ;
Dogruoez, Alper ;
Goekalp, Muazzez ;
Arik-Sever, Elif ;
Istvanffy, Rouzanna ;
Friess, Helmut ;
Ceyhan, Guralp Onur ;
Demir, Ihsan Ekin .
JCI INSIGHT, 2022, 7 (01)
[4]   Acquired Resistance to KRASG12C Inhibition in Cancer [J].
Awad, M. M. ;
Liu, S. ;
Rybkin, I. I. ;
Arbour, K. C. ;
Dilly, J. ;
Zhu, V. W. ;
Johnson, M. L. ;
Heist, R. S. ;
Patil, T. ;
Riely, G. J. ;
Jacobson, J. O. ;
Yang, X. ;
Persky, N. S. ;
Root, D. E. ;
Lowder, K. E. ;
Feng, H. ;
Zhang, S. S. ;
Haigis, K. M. ;
Hung, Y. P. ;
Sholl, L. M. ;
Wolpin, B. M. ;
Wiese, J. ;
Christiansen, J. ;
Lee, J. ;
Schrock, A. B. ;
Lim, L. P. ;
Garg, K. ;
Li, M. ;
Engstrom, L. D. ;
Waters, L. ;
Lawson, J. D. ;
Olson, P. ;
Lito, P. ;
Ou, S. -H. I. ;
Christensen, J. G. ;
Janne, P. A. ;
Aguirre, A. J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (25) :2382-2393
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer [J].
Buscail, Louis ;
Bournet, Barbara ;
Cordelier, Pierre .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2020, 17 (03) :153-168
[7]   Small-Molecule Inhibitors Directly Targeting KRAS as Anticancer Therapeutics [J].
Chen, Hao ;
Smaill, Jeff B. ;
Liu, Tongzheng ;
Ding, Ke ;
Lu, Xiaoyun .
JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (23) :14404-14424
[8]   Enhancing sampling with free-energy calculations [J].
Chen, Haochuan ;
Chipot, Christophe .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 77
[9]   Markov state models of biomolecular conformational dynamics [J].
Chodera, John D. ;
Noe, Frank .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2014, 25 :135-144
[10]   Deciphering the Complexity of Ligand-Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD) Simulations [J].
Cuzzolin, Alberto ;
Sturlese, Mattia ;
Deganutti, Giuseppe ;
Salmaso, Veronica ;
Sabbadin, Davide ;
Ciancetta, Antonella ;
Moro, Stefano .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (04) :687-705