Support effect in metal-organic framework-derived copper-based electrocatalysts facilitating the reduction of nitrate to ammonia

被引:2
|
作者
Yang, Shang-Cheng [1 ]
Muthiah, Balaganesh [2 ]
Chang, Jhe-Wei [1 ]
Tsai, Meng -Dian [1 ]
Wang, Yi-Ching [1 ]
Li, Yi-Pei [2 ]
Kung, Chung-Wei [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, 1 Univ Rd, Tainan 70101, Taiwan
[2] Natl Taiwan Univ, Dept Chem Engn, Taipei City 10617, Taiwan
关键词
Ammonia synthesis; Carbonized MOF; Ceria-supported Cu; Electrochemical nitrate reduction; Zirconia-supported Cu; CATALYSTS; WATER; SELECTIVITY; ADSORPTION; STABILITY; NITROGEN; MOFS; LI+;
D O I
10.1016/j.electacta.2024.144348
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Metal-organic framework (MOF)-derived copper supported by ceria/carbon, zirconia/carbon, and carbon are synthesized by thermally carbonizing a copper-installed cerium-based MOF, a copper-installed zirconium-based MOF, and a copper-based MOF constructed from the same organic building block, respectively. These materials are characterized by X-ray diffraction, electron microscopes, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma optical emission spectrometry, two-probe conductivity measurements, and nitrogen adsorption-desorption analysis. Modified electrodes of these electrocatalysts with the same areal loading of copper are prepared in order to investigate the effect of underlying supports on the resulting electrocatalytic activity of copper for the reduction of nitrate. Electrolytic experiments with these modified electrodes are conducted in neutral aqueous solutions containing 0.5 M of nitrate at various applied potentials, and product analysis is performed. The overall reaction rate, Faradaic efficiency of each product, selectivity toward the production of ammonia against the formation of nitrite, and the turnover frequency for ammonia production normalized by the amount of electrochemically addressable copper sites are thus quantified at every electrolytic condition. The copper supported by ceria/carbon exhibits the highest selectivity toward ammonia production against the formation of nitrite among all the three materials; a selectivity of 73.4 % at -1.29 V vs. standard hydrogen electrode is achieved, which is much higher than those achieved by the zirconia/carbon-supported copper (36.0 %) and carbon-supported copper (47.2 %). Density functional theory (DFT) computational studies are performed to probe the reason for such a difference in the electrocatalytic activity of copper caused by the underlying support. Findings here suggest the importance of selecting the underlying support upon the design of Cu-based electrocatalysts used for nitrate reduction.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Bimetallic metal-organic framework-derived carbon nanocubes as efficient electrocatalysts for oxygen evolution reaction
    Chen, Hongxu
    Lv, Enjun
    Ji, Qinghong
    Zou, Lijia
    Liu, Huajian
    Yong, Jiayi
    Gao, Junkuo
    JOURNAL OF SOLID STATE CHEMISTRY, 2020, 291
  • [22] A metal-organic framework-derived bifunctional oxygen electrocatalyst
    Xia, Bao Yu
    Yan, Ya
    Li, Nan
    Wu, Hao Bin
    Lou, Xiong Wen
    Wang, Xin
    NATURE ENERGY, 2016, 1
  • [23] Metal-organic framework-derived porous materials for catalysis
    Chen, Yu-Zhen
    Zhang, Rui
    Jiao, Long
    Jiang, Hai-Long
    COORDINATION CHEMISTRY REVIEWS, 2018, 362 : 1 - 23
  • [24] A metal-organic framework-derived bifunctional oxygen electrocatalyst
    Xia B.Y.
    Yan Y.
    Li N.
    Wu H.B.
    Lou X.W.D.
    Wang X.
    Nature Energy, 1 (1)
  • [25] Metal-Organic Framework-Derived Carbons for Battery Applications
    Li, Xiaxia
    Zheng, Shasha
    Jin, Ling
    Li, Yan
    Geng, Pengbiao
    Xue, Huaiguo
    Pang, Huan
    Xu, Qiang
    ADVANCED ENERGY MATERIALS, 2018, 8 (23)
  • [26] Metal-Organic Framework-Derived Non-Precious Metal Nanocatalysts for Oxygen Reduction Reaction
    Fu, Shaofang
    Zhu, Chengzhou
    Song, Junhua
    Du, Dan
    Lin, Yuehe
    ADVANCED ENERGY MATERIALS, 2017, 7 (19)
  • [27] Metal-organic framework-derived atomically dispersed metal site catalysts for oxygen reduction in acids
    Wu, Gang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [28] Insights into Metal-Organic Framework-Derived Copper Clusters for CO2 Electroreduction
    Smith, Michael R.
    Gilman, Ari
    Hullfish, Cole W.
    Niu, Wenhan
    Zheng, Yiteng
    Koel, Bruce E.
    Sarazen, Michele L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (32): : 13649 - 13659
  • [29] A review on development of metal-organic framework-derived bifunctional electrocatalysts for oxygen electrodes in metal-air batteries
    Javed, Najla
    Noor, Tayyaba
    Iqbal, Naseem
    Naqvi, Salman Raza
    RSC ADVANCES, 2023, 13 (02) : 1137 - 1161
  • [30] Synthesis of copper-based metal-organic framework for sensing nitroaromatic compounds
    Zhang, Ying
    Gao, Zhu
    Liu, Wei
    Liu, Gongchi
    Zhu, Mingchang
    Wu, Shuangyan
    Yao, Wei
    Gao, Enjun
    INORGANIC CHEMISTRY COMMUNICATIONS, 2021, 134