Seismic Vulnerability Assessment of Self-Centering Prestressed Concrete Frames with and without Masonry Infill Walls: Experimental and Numerical Models

被引:2
|
作者
Zhu, Ruizhao [1 ]
Guo, Tong [1 ]
Song, Lianglong [2 ]
Yang, Kun [3 ]
Xu, Gang [3 ]
Tesfamariam, Solomon [4 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab Concrete & Prestressed Concrete Struct, Nanjing 210096, Peoples R China
[2] Hohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
[3] Southeast Univ, Sch Civil Engn, Nanjing 210096, Peoples R China
[4] Univ Waterloo, Dept Civil & Environm Engn, 200 Univ Ave, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Masonry infill wall (MIW); Self-centering; Prestressed concrete frame; Quasi-static test; Vulnerability; Mainshock-aftershock; INCLUDING RESIDUAL DEFORMATIONS; PERFORMANCE; CONNECTION; BUILDINGS;
D O I
10.1061/JSENDH.STENG-13207
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Interaction between masonry infill walls (MIWs) and a main structural system can impact the overall structural performance. However, there is no test to investigate the impact of MIWs on self-centering prestressed concrete (SCPC) frames, nor has there been a probabilistic performance evaluation considering the coupling effects of peak interstory drift ratio (PIDR) and residual interstory drift ratio (RIDR). This study compares the seismic performance of SCPC frames with and without MIWs through quasi-static tests and seismic risk assessment under mainshock-aftershock (MSAS) sequences. To begin, quasi-static tests on one-story SCPC frames with and without MIWs are performed to assess their seismic performance. A numerical simulation method for the SCPC frame with MIWs is then proposed and validated. Following that, the seismic performance of four multistory SCPC frames with and without MIWs is investigated under MSAS sequences at the maximum considered earthquake level. Finally, the seismic vulnerability assessment, considering the coupling effect of PIDR and RIDR under MSAS sequences, is conducted. The results indicate that cracks on the MIW present diagonal stepped cracks, and the MIW does not cause damage to the SCPC frame. When the MIW is damaged, the RIDR of the SCPC-MIW frame increases significantly; when the crack development is stable, the RIDR increases slowly as the interstory drift increases but remains at a very low level. Besides, when the MIW is damaged, an obvious deformation concentration effect occurs on the SCPC-MIW frame. The SCPC-MIW frame has a lower probability of exceeding the immediate occupancy level P(IO) than the SCPC frame, but it has a higher probability of exceeding the repairable level P(RE) when the seismic intensity is relatively small. Overall, the P(IO) and P(RE) of the SCPC and SCPC-MIW frames are higher under MSAS sequences than under MS-only sequences, except for the SCPC25 frame.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Experimental evaluation of multi-story self-centering prestressed concrete frames with web friction devices under cyclic loading
    Cheng, Shiyan
    Guo, Tong
    Xie, Tianyu
    Shi, Xin
    ENGINEERING STRUCTURES, 2025, 323
  • [22] Seismic Analysis of Low-Rise Self-Centering Prestressed Concrete Frames considering Soil-Structure Interaction
    Song, Liang-Long
    Guo, Tong
    Shi, Xin
    SHOCK AND VIBRATION, 2019, 2019
  • [23] Seismic performance of self-centering prestressed concrete frame with auxetic perforated steel plate shear walls
    Zhu, Yazhi
    Zhang, Jun-Hua
    Cai, Xiaoning
    Wang, Peng
    Chen, Xingwang
    JOURNAL OF BUILDING ENGINEERING, 2025, 101
  • [24] Experimental study of a self-centering prestressed concrete frame subassembly
    Song, Liang-Long
    Guo, Tong
    Gu, Yu
    Cao, Zhi-Liang
    ENGINEERING STRUCTURES, 2015, 88 : 176 - 188
  • [25] Seismic response of self-centering precast concrete frames with hysteretic dampers
    Li, Yadong
    Ding, Youliang
    Geng, Fangfang
    Wang, Libin
    STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2019, 28 (08)
  • [26] Seismic behavior and reliability of variable friction damped self-centering prestressed concrete frames considering bolt bearing
    Huang, Linjie
    Zeng, Bin
    Zhou, Zhen
    Zhang, Wenqing
    Wei, Yang
    Li, Chunyu
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2023, 164
  • [27] Seismic design and performance of self-centering precast concrete frames with variable friction dampers
    Huang, Linjie
    Clayton, Patricia M.
    Zhou, Zhen
    ENGINEERING STRUCTURES, 2021, 245
  • [28] Effect of infill walls on progressive collapse behavior of self-centering precast concrete frame
    Wang, Haoran
    Li, Shuang
    Zhai, Changhai
    STRUCTURES, 2024, 59
  • [29] A study of the response of reinforced concrete frames with and without masonry infill walls to earthquake motions
    Monical, Jonathan
    Pujol, Santiago
    STRUCTURES, 2024, 63
  • [30] Impact of self-centering brace type on the seismic fragility of reinforced concrete frames
    Wang, Jishuai
    Guo, Tong
    Zhang, Yunwen
    Ji, Xinqiang
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2022, 18 (08) : 1152 - 1163