A residual autoencoder-based transformer for fault detection of multivariate processes

被引:1
|
作者
Shang, Jilin [1 ]
Yu, Jianbo [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Industrial process; Process fault detection; Transformer; Autoencoder; Feature learning; Residual learning; DIAGNOSIS;
D O I
10.1016/j.asoc.2024.111896
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The complexity of high-dimensional and noisy process signals reduces the effectiveness of conventional fault detection methods in industrial processes. Based on the hypothesis that data collected from normal and faulty processes has different characteristics, unsupervised deep neural networks, e.g., autoencoders, have been widely applied in process fault detection and achieved good performance. Many variants have been proposed to improve feature learning by combining different network structures. In this paper, a new transformer model, residual autoencoder-based transformer, is proposed for process fault detection. Firstly, autoencoder and transformer are integrated for better unsupervised feature learning of process signals. Secondly, linear embedding and attention mechanisms with bias are proposed to generate effective features from process signals. Finally, residual connections are constructed between the encoder and decoder of RATransformer to address overfitting in training. Four industrial cases are used to test the performance of RATransformer for process fault detection. The results show that the fault detection rate of RATransformer is at least 1 % higher than other comparison methods. Moreover, the testing results show that the model structure improves the fault detection performance of RATransformer. The complex models like RATransformer can be used in the industrial process when sufficient normal process data is available. An end-to-end training method can be further developed to improve the applicability of RATransformer in process fault detection in the future.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Autoencoder-based deep metric learning for network intrusion detection
    Andresini, Giuseppina
    Appice, Annalisa
    Malerba, Donato
    INFORMATION SCIENCES, 2021, 569 (569) : 706 - 727
  • [22] Development of deep autoencoder-based anomaly detection system for HANARO
    Ryu, Seunghyoung
    Jeon, Byoungil
    Seo, Hogeon
    Lee, Minwoo
    Shin, Jin-Won
    Yu, Yonggyun
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2023, 55 (02) : 475 - 483
  • [23] A Fast Autoencoder-based Recommender
    Jiang, Jiajia
    Xia, Yunni
    Shang, Mingsheng
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1732 - 1737
  • [24] Autoencoder-Based Eggshell Crack Detection Using Acoustic Signal
    Yabanova, Ismail
    Balci, Zekeriya
    Yumurtaci, Mehmet
    Unler, Tarik
    JOURNAL OF FOOD PROCESS ENGINEERING, 2024, 47 (11)
  • [25] Convolutional Autoencoder-Based Flaw Detection for Steel Wire Ropes
    Zhang, Guoyong
    Tang, Zhaohui
    Zhang, Jin
    Gui, Weihua
    SENSORS, 2020, 20 (22) : 1 - 12
  • [26] Autoencoder-based outlier detection for sparse, high dimensional data
    Chen, Wanghu
    Li, Huijun
    Li, Jing
    Arshad, Ali
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2735 - 2742
  • [27] A semisupervised autoencoder-based method for anomaly detection in cutting tools
    Sun, Shixu
    Liu, Yingchao
    Hu, Xiaofeng
    Zhang, Wenjuan
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 93 : 315 - 327
  • [28] Unsupervised Anomaly Detection in Multivariate Time Series through Transformer-based Variational Autoencoder
    Zhang, Hongwei
    Xia, Yuanqing
    Yan, Tijin
    Liu, Guiyang
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 281 - 286
  • [29] DeepStream: Autoencoder-based stream temporal clustering and anomaly detection
    Harush, Shimon
    Meidan, Yair
    Shabtai, Asaf
    COMPUTERS & SECURITY, 2021, 106
  • [30] TransGAD: A Transformer-Based Autoencoder for Graph Anomaly Detection
    Guo, Zehao
    Wu, Nannan
    Zhao, Yiming
    Wang, Wenjun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 269 - 284