Highly dispersive eighth-order embedded solitons with cubic-quartic χ(2) and χ(3) nonlinear susceptibilities under the influence of multiplicative white noise using Itô calculus

被引:7
作者
Alngar, Mohamed E. M. [1 ]
Mostafa, Almetwally M. [2 ]
Alqahtani, Salman A. [3 ]
Shohib, Reham M. A. [4 ]
Pathak, Pranavkumar [5 ]
机构
[1] Modern Univ Technol & Informat, Fac Comp & Artificial Intelligence, Basic Sci Dept, Cairo 11585, Egypt
[2] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh, Saudi Arabia
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh, Saudi Arabia
[4] New Cairo Acad, Higher Inst Foreign Trade & Management Sci, Basic Sci Dept, Cairo, Egypt
[5] McGill Univ, Sch Continuing Studies, Montreal, PQ H3A 0G4, Canada
来源
MODERN PHYSICS LETTERS B | 2025年 / 39卷 / 10期
关键词
eighth-order embedded; It & ocirc; sense; multiplicative white noise; solitons; optical communication; Quadratic chi((2))and cubic chi((3)); OPTICAL SOLITONS; EQUATION;
D O I
10.1142/S0217984924504748
中图分类号
O59 [应用物理学];
学科分类号
摘要
This research explores the intriguing realm of eighth-order embedded solitons in highly dispersive media with cubic-quartic nonlinear susceptibilities chi((2)) and chi((3)) , all within the dynamic context of multiplicative white noise and the framework of It & ocirc; calculus. Two different approaches are used in this study. The new auxiliary equation approach produces the bright soliton and singular soliton solutions, while the addendum Kudryashov's approach produces the bright soliton, singular soliton and combo bright-singular soliton solutions. The system under investigation and the results documented within this work stand as pioneering and original contributions to the field of nonlinear optics. Furthermore, a collection of 2D, 3D and contour plots is produced to visually represent the spatial distribution and progression of different solutions. This not only contributes to the advancement of nonlinear equations in theory but also offers valuable insights for practical applications.
引用
收藏
页数:17
相关论文
共 23 条
[1]   The effect of multiplicative noise on the exact solutions of nonlinear Schrodinger equation [J].
Abdelrahman, Mahmoud A. E. ;
Mohammed, Wael W. ;
Alesemi, Meshari ;
Albosaily, Sahar .
AIMS MATHEMATICS, 2021, 6 (03) :2970-2980
[2]   Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrodinger Equation [J].
Albosaily, Sahar ;
Mohammed, Wael W. ;
Aiyashi, Mohammed A. ;
Abdelrahman, Mahmoud A. E. .
SYMMETRY-BASEL, 2020, 12 (11) :1-12
[3]  
AlQahtani SA., 2024, Int. J. Appl. Comput. Math, V10, P9, DOI [10.1007/s40819-023-01643-y, DOI 10.1007/S40819-023-01643-Y]
[4]   Highly dispersive embedded solitons with quadratic?(2) and cubic?(3) non-linear susceptibilities having multiplicative white noise via Ito calculus [J].
AlQahtani, Salman A. ;
Alngar, Mohamed E. M. ;
Shohib, Reham M. A. ;
Pathak, Pranavkumar .
CHAOS SOLITONS & FRACTALS, 2023, 171
[5]   Optical solitons in parabolic law medium with weak non-local nonlinearity by extended trial function method [J].
Biswa, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Mirzazadeh, Mohammad ;
Zhou, Qin ;
Alshomrani, Ali Saleh ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 163 :56-61
[6]   Stochastic perturbation of optical solitons having generalized anti-cubic nonlinearity with bandpass filters and multi-photon absorption [J].
Khan, Salam .
OPTIK, 2020, 200
[7]   Stochastic perturbation of sub-pico second envelope solitons for Triki-Biswas equation with multi-photon absorption and bandpass filters [J].
Khan, Salam .
OPTIK, 2019, 183 :174-178
[8]   Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrodinger equation [J].
Kudryashov, Nikolay A. .
OPTIK, 2020, 206
[9]   Method for finding highly dispersive optical solitons of nonlinear differential equations [J].
Kudryashov, Nikolay A. .
OPTIK, 2020, 206
[10]   One method for finding exact solutions of nonlinear differential equations [J].
Kudryashov, Nikolay A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2248-2253