An explainable machine learning model to solid adnexal masses diagnosis based on clinical data and qualitative ultrasound indicators

被引:3
作者
Fanizzi, Annarita [1 ]
Arezzo, Francesca [2 ,3 ]
Cormio, Gennaro [2 ,4 ]
Comes, Maria Colomba [1 ]
Cazzato, Gerardo [5 ]
Boldrini, Luca [6 ]
Bove, Samantha [1 ]
Bollino, Michele [7 ,8 ]
Kardhashi, Anila [2 ]
Silvestris, Erica [2 ]
Quarto, Pietro [2 ,4 ]
Mongelli, Michele [3 ]
Naglieri, Emanuele [9 ]
Signorile, Rahel [1 ]
Loizzi, Vera [2 ,4 ]
Massafra, Raffaella [1 ]
机构
[1] IRCCS Ist Tumori Giovanni Paolo II, Lab Biostat & Bioinformat, Bari, Italy
[2] IRCCS Ist Tumori Giovanni Paolo II, Gynecol Oncol Unit, Bari, Italy
[3] Univ Bari Aldo Moro, Dept Precis & Regenerat Med Ionian Area, Bari, Italy
[4] Univ Bari Aldo Moro, Interdisciplinar Dept Med, Bari, Italy
[5] Univ Bari Aldo Moro, Dept Emergency & Organ Transplantat, Sect Mol Pathol, Bari, Italy
[6] Fdn Policlin Univ A Gemelli IRCCS, Rome, Italy
[7] Skane Univ Hosp, Dept Obstet & Gynecol, Div Gynecol Oncol, Lund, Sweden
[8] Lund Univ, Fac Med, Clin Sci, Lund, Sweden
[9] Ist Tumori Giovanni Paolo II, Med Oncol Unit, IRCCS, Bari, Italy
来源
CANCER MEDICINE | 2024年 / 13卷 / 12期
关键词
gynecological ultrasound; machine learning; ovarian cancer; precision medicine; solid adnexal masses; OVARIAN-CANCER; FEATURES; PREDICTION; MALIGNANCY; TUMORS;
D O I
10.1002/cam4.7425
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundAccurate characterization of newly diagnosed a solid adnexal lesion is a key step in defining the most appropriate therapeutic approach. Despite guidance from the International Ovarian Tumor Analyzes Panel, the evaluation of these lesions can be challenging. Recent studies have demonstrated how machine learning techniques can be applied to clinical data to solve this diagnostic problem. However, ML models can often consider as black-boxes due to the difficulty of understanding the decision-making process used by the algorithm to obtain a specific result.AimsFor this purpose, we propose an Explainable Artificial Intelligence model trained on clinical characteristics and qualitative ultrasound indicators to predict solid adnexal masses diagnosis.Materials & MethodsSince the diagnostic task was a three-class problem (benign tumor, invasive cancer, or ovarian metastasis), we proposed a waterfall classification model: a first model was trained and validated to discriminate benign versus malignant, a second model was trained to distinguish nonmetastatic versus metastatic malignant lesion which occurs when a patient is predicted to be malignant by the first model. Firstly, a stepwise feature selection procedure was implemented. The classification performances were validated on Leave One Out scheme.ResultsThe accuracy of the three-class model reaches an overall accuracy of 86.36%, and the precision per-class of the benign, nonmetastatic malignant, and metastatic malignant classes were 86.96%, 87.27%, and 77.78%, respectively. Discussion: SHapley Additive exPlanations were performed to visually show how the machine learning model made a specific decision. For each patient, the SHAP values expressed how each characteristic contributed to the classification result. Such information represents an added value for the clinical usability of a diagnostic system.ConclusionsThis is the first work that attempts to design an explainable machine-learning tool for the histological diagnosis of solid masses of the ovary.
引用
收藏
页数:13
相关论文
共 42 条
  • [1] IOTA simple rules for discriminating between benign and malignant adnexal masses: prospective external validation
    Alcazar, J. L.
    Pascual, M. A.
    Olartecoechea, B.
    Graupera, B.
    Auba, M.
    Ajossa, S.
    Hereter, L.
    Julve, R.
    Gaston, B.
    Peddes, C.
    Sedda, F.
    Piras, A.
    Saba, L.
    Guerriero, S.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2013, 42 (04) : 467 - 471
  • [2] The Role of Ultrasound Guided Sampling Procedures in the Diagnosis of Pelvic Masses: A Narrative Review of the Literature
    Arezzo, Francesca
    Loizzi, Vera
    La Forgia, Daniele
    Abdulwakil Kawosha, Adam
    Silvestris, Erica
    Cataldo, Viviana
    Lombardi, Claudio
    Cazzato, Gerardo
    Ingravallo, Giuseppe
    Resta, Leonardo
    Cormio, Gennaro
    [J]. DIAGNOSTICS, 2021, 11 (12)
  • [3] Radiomics Analysis in Ovarian Cancer: A Narrative Review
    Arezzo, Francesca
    Loizzi, Vera
    La Forgia, Daniele
    Moschetta, Marco
    Tagliafico, Alberto Stefano
    Cataldo, Viviana
    Kawosha, Adam Abdulwakil
    Venerito, Vincenzo
    Cazzato, Gerardo
    Ingravallo, Giuseppe
    Resta, Leonardo
    Cicinelli, Ettore
    Cormio, Gennaro
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [4] Medical Diagnosis Using Machine Learning: A Statistical Review
    Bhavsar, Kaustubh Arun
    Singla, Jimmy
    Al-Otaibi, Yasser D.
    Song, Oh-Young
    Bin Zikriya, Yousaf
    Bashir, Ali Kashif
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (01): : 107 - 125
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [6] Sonographic characteristics of ovarian Leydig cell tumor
    Bruno, M.
    Capanna, G.
    Di Florio, C.
    Sollima, L.
    Guido, M.
    Ludovisi, M.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2023, 62 (03) : 441 - 442
  • [7] Deep Learning Prediction of Ovarian Malignancy at US Compared with O-RADS and Expert Assessment
    Chen, Hui
    Yang, Bo-Wen
    Qian, Le
    Meng, Yi-Shuang
    Bai, Xiang-Hui
    Hong, Xiao-Wei
    He, Xin
    Jiang, Mei-Jiao
    Yuan, Fei
    Du, Qin-Wen
    Feng, Wei-Wei
    [J]. RADIOLOGY, 2022, 304 (01) : 106 - 113
  • [8] A decision support system based on radiomics and machine learning to predict the risk of malignancy of ovarian masses from transvaginal ultrasonography and serum CA-125
    Chiappa, Valentina
    Interlenghi, Matteo
    Bogani, Giorgio
    Salvatore, Christian
    Bertolina, Francesca
    Sarpietro, Giuseppe
    Signorelli, Mauro
    Ronzulli, Dominique
    Castiglioni, Isabella
    Raspagliesi, Francesco
    [J]. EUROPEAN RADIOLOGY EXPERIMENTAL, 2021, 5 (01)
  • [9] The Adoption of Radiomics and machine learning improves the diagnostic processes of women with Ovarian MAsses (the AROMA pilot study)
    Chiappa, Valentina
    Bogani, Giorgio
    Interlenghi, Matteo
    Salvatore, Christian
    Bertolina, Francesca
    Sarpietro, Giuseppe
    Signorelli, Mauro
    Castiglioni, Isabella
    Raspagliesi, Francesco
    [J]. JOURNAL OF ULTRASOUND, 2021, 24 (04) : 429 - 437
  • [10] Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment
    Christiansen, F.
    Epstein, E. L.
    Smedberg, E.
    Akerlund, M.
    Smith, K.
    Epstein, E.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2021, 57 (01) : 155 - 163