Nonlinear mixed type product [K, F]* o D on *-algebras

被引:0
作者
Nisar, Junaid [1 ]
Alsuraiheed, Turki [2 ]
Rehman, Nadeem ur [3 ]
机构
[1] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Dept Appl Sci, Pune, India
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
关键词
mixed bi-skew Jordan triple derivation; *-derivation; algebra; involution; DERIVATIONS;
D O I
10.3934/math.20241049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 5t be a unital *-algebra containing a non -trivial projection. In this paper, we prove that if a map SZ : 5t- 5t such that SZ ([ K, F ] * o D ) = [ SZ ( K ) , F ] * o D + [ K, SZ ( F )] * o D + [ K, F ] * o SZ ( D ) , where [ K, F ] * = KF - FK * and K o F = K * F + FK * for all K, F, D E 5t , then SZ is an additive *-derivation. Furthermore, we extend its results on factor von Neumann algebras, standard operator algebras and prime *-algebras. Additionally, we provide an example illustrating the existence of such maps.
引用
收藏
页码:21596 / 21608
页数:13
相关论文
共 16 条
[1]   Nonlinear bi-skew Lie-type derivations on factor von Neumann algebras [J].
Ashraf, Mohammad ;
Akhter, Md Shamim ;
Ansari, Mohammad Afajal .
COMMUNICATIONS IN ALGEBRA, 2022, 50 (11) :4766-4780
[2]   Nonlinear mappings preserving Jordan multiple *- product on factor von Neumann algebras [J].
Huo, Donghua ;
Zheng, Baodong ;
Xu, Jinli ;
Liu, Hongyu .
LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (05) :1026-1036
[3]   MULTIPLICATIVE BISKEW LIE TRIPLE DERIVATIONS ON FACTOR VON NEUMANN ALGEBRAS [J].
Khan, Abdul Nadim .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) :2103-2114
[4]  
Kong L, 2023, INDIAN J PURE AP MAT, V54, P475, DOI 10.1007/s13226-022-00269-y
[5]  
Li C, 2022, SIBERIAN MATH J+, V63, P735, DOI 10.1134/S0037446622040140
[6]   Nonlinear Skew Lie Triple Derivations between Factors [J].
Li, Chang Jing ;
Zhao, Fang Fang ;
Chen, Quan Yuan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (07) :821-830
[7]   Nonlinear Maps Preserving the Mixed Product [A ○ B, C]* on Von Neumann Algebras [J].
Li, Changjing ;
Zhao, Yuanyuan ;
Zhao, Fangfang .
FILOMAT, 2021, 35 (08) :2775-2781
[8]   NONLINEAR *-JORDAN-TYPE DERIVATIONS ON *-ALGEBRAS [J].
Li, Changjing ;
Zhao, Yuanyuan ;
Zhao, Fangfang .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (02) :601-612
[9]   Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras [J].
Li, Changjing ;
Chen, Quanyuan ;
Wang, Ting .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (04) :633-642
[10]  
Li CJ, 2017, COMPLEX ANAL OPER TH, V11, P109, DOI 10.1007/s11785-016-0575-y