Improving plastic degrading enzymes via directed evolution

被引:2
作者
Joho, Yvonne [1 ,2 ,3 ]
Vongsouthi, Vanessa [2 ]
Gomez, Chloe [2 ]
Larsen, Joachim S. [2 ,4 ]
Ardevol, Albert [1 ,3 ]
Jackson, Colin J. [2 ,4 ,5 ]
机构
[1] CSIRO, Mfg, Res Way, Clayton, Vic 3168, Australia
[2] Australian Natl Univ, Res Sch Chem, Sullivans Creek Rd, Canberra, ACT 2601, Australia
[3] CSIRO Adv Engn Biol Future Sci Platform, GPO Box 1700, Canberra, ACT 2601, Australia
[4] Australian Natl Univ, ARC Ctr Excellence Synthet Biol, Res Sch Chem, Sullivans Creek Rd, Canberra, ACT 2601, Australia
[5] Australian Natl Univ, ARC Ctr Excellence Innovat Peptide & Prot Sci, Res Sch Chem, Sullivans Creek Rd, Canberra, ACT 2601, Australia
关键词
Plastic-degrading enzymes; Protein engineering; Directed evolution; PET-hydrolases; POLYETHYLENE TEREPHTHALATE; DEPOLYMERASE; DEGRADATION; HYDROLASES; SYSTEM; PETASE;
D O I
10.1093/protein/gzae009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes. Graphical Abstract
引用
收藏
页数:11
相关论文
共 74 条
[21]   Natural Diversity to Guide Focused Directed Evolution [J].
Jochens, Helge ;
Bornscheuer, Uwe T. .
CHEMBIOCHEM, 2010, 11 (13) :1861-1866
[22]   Ancestral Sequence Reconstruction Identifies Structural Changes Underlying the Evolution of Ideonella sakaiensis PETase and Variants with Improved Stability and Activity [J].
Joho, Yvonne ;
Vongsouthi, Vanessa ;
Spence, Matthew A. ;
Ton, Jennifer ;
Gomez, Chloe ;
Tan, Li Lynn ;
Kaczmarski, Joe A. ;
Caputo, Alessandro T. ;
Royan, Santana ;
Jackson, Colin J. ;
Ardevol, Albert .
BIOCHEMISTRY, 2023, 62 (02) :437-450
[23]   Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation [J].
Joo, Seongjoon ;
Cho, In Jin ;
Seo, Hogyun ;
Son, Hyeoncheol Francis ;
Sagong, Hye-Young ;
Shin, Tae Joo ;
Choi, So Young ;
Lee, Sang Yup ;
Kim, Kyung-Jin .
NATURE COMMUNICATIONS, 2018, 9
[24]   Characterization and engineering of a two-enzyme system for plastics depolymerization [J].
Knott, Brandon C. ;
Erickson, Erika ;
Allen, Mark D. ;
Gado, Japheth E. ;
Graham, Rosie ;
Kearns, Fiona L. ;
Pardo, Isabel ;
Topuzlu, Ece ;
Anderson, Jared J. ;
Austin, Harry P. ;
Dominick, Graham ;
Johnson, Christopher W. ;
Rorrer, Nicholas A. ;
Szostkiewicz, Caralyn J. ;
Copie, Valerie ;
Payne, Christina M. ;
Woodcock, H. Lee ;
Donohoe, Bryon S. ;
Beckham, Gregg T. ;
McGeehan, John E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (41) :25476-25485
[25]   Discovery and mechanism-guided engineering of BHET hydrolases for improved PET recycling and upcycling [J].
Li, Anni ;
Sheng, Yijie ;
Cui, Haiyang ;
Wang, Minghui ;
Wu, Luxuan ;
Song, Yibo ;
Yang, Rongrong ;
Li, Xiujuan ;
Huang, He .
NATURE COMMUNICATIONS, 2023, 14 (01)
[26]   Engineering Transcription Factor XylS for Sensing Phthalic Acid and Terephthalic Acid: An Application for Enzyme Evolution [J].
Li, Jiawei ;
Nina, Mario Roque Huanca ;
Zhang, Xiaoyan ;
Bai, Yunpeng .
ACS SYNTHETIC BIOLOGY, 2022, 11 (03) :1106-1113
[27]   A Dual Fluorescence Assay Enables High-Throughput Screening for Poly(ethylene terephthalate) Hydrolases [J].
Liu, Kun ;
Xu, Ziping ;
Zhao, Zhiyi ;
Chen, Yuexing ;
Chai, Yating ;
Ma, Li ;
Li, Shengying .
CHEMSUSCHEM, 2023, 16 (05)
[28]   Machine learning-aided engineering of hydrolases for PET depolymerization [J].
Lu, Hongyuan ;
Diaz, Daniel J. ;
Czarnecki, Natalie J. ;
Zhu, Congzhi ;
Kim, Wantae ;
Shroff, Raghav ;
Acosta, Daniel J. ;
Alexander, Bradley R. ;
Cole, Hannah O. ;
Zhang, Yan ;
Lynd, Nathaniel A. ;
Ellington, Andrew D. ;
Alper, Hal S. .
NATURE, 2022, 604 (7907) :662-+
[29]   High-throughput directed evolution: a golden era for protein science [J].
McLure, Romany J. ;
Radford, Sheena E. ;
Brockwell, David J. .
TRENDS IN CHEMISTRY, 2022, 4 (05) :378-391
[30]   Improved Soluble Expression and Catalytic Activity of a Thermostable Esterase Using a High-Throughput Screening System Based on a Split-GFP Assembly [J].
Mo, Hong-Mei ;
Xu, Yan ;
Yu, Xiao-Wei .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (48) :12756-12764