Leveraging high-throughput screening technologies in targeted mRNA delivery

被引:5
作者
Zhang, Yuchen [3 ]
Gao, Zhifei [3 ]
Yang, Xiao [3 ]
Xu, Qinglong [3 ]
Lu, Yao [1 ,2 ,3 ]
机构
[1] Southern Med Univ, Zhujiang Hosp, Orthoped Ctr, Dept Joint & Orthoped, Guangzhou 510282, Guangdong, Peoples R China
[2] Southern Med Univ, Zhujiang Hosp, Clin Res Ctr, Guangzhou 510282, Guangdong, Peoples R China
[3] Southern Med Univ, Zhujiang Hosp, Sch Clin Med 2, Guangzhou 510282, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Messenger ribonucleic acid; High -throughput screening; Targeted delivery; Lipid nanoparticles; LIPID NANOPARTICLES; DRUG-DELIVERY; IN-VIVO; EXTRACELLULAR VESICLES; STRATEGIES; FIBROSIS; EFFICACY; SYSTEM; SPLEEN;
D O I
10.1016/j.mtbio.2024.101101
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Messenger ribonucleic acid (mRNA) has emerged as a promising molecular preventive and therapeutic approach that opens new avenues for healthcare. Although the use of delivery systems, especially lipid nanoparticles (LNPs), greatly improves the efficiency and stability of mRNA, mRNA tends to accumulate in the liver and hardly penetrates physiological barriers to reach the target site after intravenous injection. Hence, the rational design of targeting strategies aimed at directing mRNA to specific tissues and cells remains an enormous challenge in mRNA therapy. High-throughput screening (HTS) is a cutting-edge targeted technique capable of synthesizing chemical compound libraries for the large-scale experiments to validate the efficiency of mRNA delivery system. In this review, we firstly provide an overview of conventional low-throughput targeting strategies. Then the latest advancements in HTS techniques for mRNA targeted delivery, encompassing optimizing structures of largescale delivery vehicles and developing large-scale surface ligands, as well as the applications of HTS techniques in extrahepatic systemic diseases are comprehensively summarized. Moreover, we illustrate the selection of administration routes for targeted mRNA delivery. Finally, challenges in the field and potential solutions to tackle them are proposed, offering insights for future development toward mRNA targeted therapy.
引用
收藏
页数:22
相关论文
共 183 条
[1]   Engineered ε-decalactone lipomers bypass the liver to selectively in vivo deliver mRNA to the lungs without targeting ligands [J].
Abd Elwakil, Mahmoud M. ;
Gao, Tianle ;
Isono, Takuya ;
Sato, Yusuke ;
Elewa, Yaser H. A. ;
Satoh, Toshifumi ;
Harashima, Hideyoshi .
MATERIALS HORIZONS, 2021, 8 (08) :2251-2259
[2]   Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections [J].
Abramson, Alex ;
Kirtane, Ameya R. ;
Shi, Yunhua ;
Zhong, Grace ;
Collins, Joy E. ;
Tamang, Siddartha ;
Ishida, Keiko ;
Hayward, Alison ;
Wainer, Jacob ;
Rajesh, Netra Unni ;
Lu, Xiaoya ;
Gao, Yuan ;
Karandikar, Paramesh ;
Tang, Chaoyang ;
Lopes, Aaron ;
Wahane, Aniket ;
Reker, Daniel ;
Frederiksen, Morten Revsgaard ;
Jensen, Brian ;
Langer, Robert ;
Traverso, Giovanni .
MATTER, 2022, 5 (03) :975-987
[3]   Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy [J].
Amin, Muhammad Umair ;
Ali, Sajid ;
Ali, Muhammad Yasir ;
Tariq, Imran ;
Nasrullah, Usman ;
Pinnapreddy, Shashank Reddy ;
Woelk, Christian ;
Bakowsky, Udo ;
Bruessler, Jana .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2021, 165 :31-40
[4]   Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes [J].
Awasthi, Sita ;
Hook, Lauren M. ;
Pardi, Norbert ;
Wang, Fushan ;
Myles, Arpita ;
Cancro, Michael P. ;
Cohen, Gary H. ;
Weissman, Drew ;
Friedman, Harvey M. .
SCIENCE IMMUNOLOGY, 2019, 4 (39)
[5]   Stealth Fluorescence Labeling for Live Microscopy Imaging of mRNA Delivery [J].
Baladi, Tom ;
Nilsson, Jesper R. ;
Gallud, Audrey ;
Celauro, Emanuele ;
Gasse, Cecile ;
Levi-Acobas, Fabienne ;
Sarac, Ivo ;
Hollenstein, Marcel R. ;
Dahlen, Anders ;
Esbjorner, Elin K. ;
Wilhelmsson, L. Marcus .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (14) :5413-5424
[6]   Gold-containing liposomes and glucose-coated gold nanoparticles enhances the radiosensitivity of B16F0 melanoma cells via increasing apoptosis and ROS production [J].
Bemidinezhad, Abolfazl ;
Mirzavi, Farshad ;
Gholamhosseinian, Hamid ;
Gheybi, Fatemeh ;
Soukhtanloo, Mohammad .
LIFE SCIENCES, 2023, 318
[7]   Biodegradable lipophilic polymeric mRNA nanoparticles for ligand-free targeting of splenic dendritic cells for cancer vaccination [J].
Ben-Akiva, Elana ;
Karlsson, Johan ;
Hemmati, Shayan ;
Yu, Hongzhe ;
Tzeng, Stephany Y. ;
Pardoll, Drew M. ;
Green, Jordan J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (26)
[8]   Orthogonal Design of Experiments for Optimization of Lipid Nanoparticles for mRNA Engineering of CAR T Cells [J].
Billingsley, Margaret M. ;
Hamilton, Alex G. ;
Mai, David ;
Patel, Savan K. ;
Swingle, Kelsey L. ;
Sheppard, Neil C. ;
June, Carl H. ;
Mitchell, Michael J. .
NANO LETTERS, 2022, 22 (01) :533-542
[9]   Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering [J].
Billingsley, Margaret M. ;
Singh, Nathan ;
Ravikumar, Pranali ;
Zhang, Rui ;
June, Carl H. ;
Mitchell, Michael J. .
NANO LETTERS, 2020, 20 (03) :1578-1589
[10]   mRNA vaccine for treating pancreatic cancer [J].
Bird, Lucy .
NATURE REVIEWS IMMUNOLOGY, 2023, 23 (7) :413-413