CSI crowd-counting: An experimental study using Machine Learning and Deep Learning Algorithms

被引:0
作者
Torres-Cerda, Miguel A. [1 ]
Gonzalez-Navarro, Felix F. [1 ]
Caro-Gutierrez, Jesus [1 ]
Armenta-Garcia, Jesus A. [1 ]
机构
[1] Univ Autonoma Baja California, Engn Inst, Mexicali, Baja California, Mexico
来源
2023 MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE, ENC | 2024年
关键词
Crowd-counting; Channel State Information; Machine Learning; Deep Learning; Wi-Fi;
D O I
10.1109/ENC60556.2023.10508604
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In 2020 due to the pandemic of COVID-19, we needed to adapt to the situation and control the amount of people inside buildings to prevent the spread of the virus. Crowd-counting using WiFi is a good approach considering the WiFi ubiquity. This paper compares the performance of different Machine Learning and Deep Learning algorithms for measuring the occupancy level of the room by using WiFi signals, e.g., Naive Bayes, K-Nearest Neighbor (KNN), Linear Discriminant Classifier (LDC), Quadratic Discriminant Classifier (QDC), Support Vector Machines (SVM), and 1 Dimension Convolutional Neural Network (1DCNN), obtaining the best accuracy of 91.67% using SVM. In addition, we compare the performance by counting the number of people inside the room, with an accuracy of 93.41% applying an SVM strategy.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Device-Free Crowd Counting Using Multi-Link Wi-Fi CSI Descriptors in Doppler Spectrum [J].
Brena, Ramon F. ;
Escudero, Edgar ;
Vargas-Rosales, Cesar ;
Galvan-Tejada, Carlos E. ;
Munoz, David .
ELECTRONICS, 2021, 10 (03) :1-25
[2]  
Chen Min, 2021, Artificial Intelligence and Security: 7th International Conference, ICAIS 2021. Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI (12737), P667, DOI 10.1007/978-3-030-78612-0_54
[3]   Wi-CaL: WiFi Sensing and Machine Learning Based Device-Free Crowd Counting and Localization [J].
Choi, Hyuckjin ;
Fujimoto, Manato ;
Matsui, Tomokazu ;
Misaki, Shinya ;
Yasumoto, Keiichi .
IEEE ACCESS, 2022, 10 :24395-24410
[4]   Estimation of the information by an adaptive partitioning of the observation space [J].
Darbellay, GA ;
Vajda, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1315-1321
[5]   Minimum redundancy feature selection from microarray gene expression data [J].
Ding, C ;
Peng, HC .
PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, :523-528
[6]   Tool Release: Gathering 802.11n Traces with Channel State Information [J].
Halperin, Daniel ;
Hu, Wenjun ;
Sheth, Anmol ;
Wetherall, David .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2011, 41 (01) :53-53
[7]   INFLUENCE CURVE AND ITS ROLE IN ROBUST ESTIMATION [J].
HAMPEL, FR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1974, 69 (346) :383-393
[8]   CrossCount: A Deep Learning System for Device-Free Human Counting Using WiFi [J].
Ibrahim, Osama Talaat ;
Gomaa, Walid ;
Youssef, Moustafa .
IEEE SENSORS JOURNAL, 2019, 19 (21) :9921-9928
[9]  
Kianoush S, 2018, WORKS POSIT NAVIGAT
[10]   1D convolutional neural networks and applications: A survey [J].
Kiranyaz, Serkan ;
Avci, Onur ;
Abdeljaber, Osama ;
Ince, Turker ;
Gabbouj, Moncef ;
Inman, Daniel J. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 151