Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence

被引:14
作者
Xu, Zishan [1 ]
Li, Wei [2 ]
Dong, Xiangyang [1 ]
Chen, Yingying [3 ]
Zhang, Dan [1 ]
Wang, Jingnan [4 ]
Zhou, Lin [5 ]
He, Guoyang [1 ]
机构
[1] Xinxiang Med Univ, Dept Pathol, Xinxiang 453000, Peoples R China
[2] Xinxiang Med Univ, Sch Forens Med, Xinxiang 453000, Peoples R China
[3] Xinxiang Med Univ, Sch Basic Med Sci, Xinxiang 453000, Peoples R China
[4] Xinxiang Med Univ, SanQuan Med Coll, Xinxiang 453003, Peoples R China
[5] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Breast & Thyroid Surg, Wuhan 430022, Peoples R China
关键词
Colorectal cancer; Precision medicine; Multi-omics; Spatial omics; Artificial intelligence; Biomarkers; MICROSATELLITE INSTABILITY; COLON-CANCER; TUMOR; IDENTIFICATION; BIOMARKERS; PROTEOMICS; DISCOVERY;
D O I
10.1016/j.cca.2024.119686
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Colorectal cancer (CRC) is a leading cause of cancer-related deaths. Recent advancements in genomic technologies and analytical approaches have revolutionized CRC research, enabling precision medicine. This review highlights the integration of multi-omics, spatial omics, and artificial intelligence (AI) in advancing precision medicine for CRC. Multi-omics approaches have uncovered molecular mechanisms driving CRC progression, while spatial omics have provided insights into the spatial heterogeneity of gene expression in CRC tissues. AI techniques have been utilized to analyze complex datasets, identify new treatment targets, and enhance diagnosis and prognosis. Despite the tumor's heterogeneity and genetic and epigenetic complexity, the fusion of multi-omics, spatial omics, and AI shows the potential to overcome these challenges and advance precision medicine in CRC. The future lies in integrating these technologies to provide deeper insights and enable personalized therapies for CRC patients.
引用
收藏
页数:10
相关论文
共 81 条
[1]   Potential early clinical stage colorectal cancer diagnosis using a proteomics blood test panel [J].
Ahn, Seong Beom ;
Sharma, Samridhi ;
Mohamedali, Abidali ;
Mahboob, Sadia ;
Redmond, William J. ;
Pascovici, Dana ;
Wu, Jemma X. ;
Zaw, Thin ;
Adhikari, Subash ;
Vaibhav, Vineet ;
Nice, Edouard C. ;
Baker, Mark S. .
CLINICAL PROTEOMICS, 2019, 16 (01)
[2]   Proteomics for discovery of candidate colorectal cancer biomarkers [J].
Alvarez-Chaver, Paula ;
Otero-Estevez, Olalla ;
Paez de la Cadena, Maria ;
Rodriguez-Berrocal, Francisco J. ;
Martinez-Zorzano, Vicenta S. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (14) :3804-3824
[3]   Deep learning in drug discovery: an integrative review and future challenges [J].
Askr, Heba ;
Elgeldawi, Enas ;
Ella, Heba Aboul ;
Elshaier, Yaseen A. M. M. ;
Gomaa, Mamdouh M. ;
Hassanien, Aboul Ella .
ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (07) :5975-6037
[4]   Machine Learning Predicts Oxaliplatin Benefit in Early Colon Cancer [J].
Chen, Lujia ;
Wang, Ying ;
Cai, Chunhui ;
Ding, Ying ;
Kim, Rim S. ;
Lipchik, Corey ;
Gavin, Patrick G. ;
Yothers, Greg ;
Allegra, Carmen J. ;
Petrelli, Nicholas J. ;
Suga, Jennifer Marie ;
Hopkins, Judith O. ;
Saito, Naoyuki G. ;
Evans, Terry ;
Jujjavarapu, Srinivas ;
Wolmark, Norman ;
Lucas, Peter C. ;
Paik, Soonmyung ;
Sun, Min ;
Pogue-Geile, Katherine L. ;
Lu, Xinghua .
JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (13) :1520-1530
[5]   Semi-supervised learning to improve generalizability of risk prediction models [J].
Chi, Shengqiang ;
Li, Xinhang ;
Tian, Yu ;
Li, Jun ;
Kong, Xiangxing ;
Ding, Kefeng ;
Weng, Chunhua ;
Li, Jingsong .
JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 92
[6]   Integrated multi-omics characterization of KRAS mutant colorectal cancer [J].
Chong, Wei ;
Zhu, Xingyu ;
Ren, Huicheng ;
Ye, Chunshui ;
Xu, Kang ;
Wang, Zhe ;
Jia, Shengtao ;
Shang, Liang ;
Li, Leping ;
Chen, Hao .
THERANOSTICS, 2022, 12 (11) :5138-5154
[7]  
De' Angelis Gian Luigi, 2018, Acta Biomed, V89, P97, DOI 10.23750/abm.v89i9-S.7960
[8]   Integrated multi-omics approach to distinct molecular characterization and classification of early-onset colorectal cancer [J].
Du, Mulong ;
Gu, Dongying ;
Xin, Junyi ;
Peters, Ulrike ;
Song, Mingyang ;
Cai, Guoshuai ;
Li, Shuwei ;
Ben, Shuai ;
Meng, Yixuan ;
Chu, Haiyan ;
Chen, Lianmin ;
Wang, Qianghu ;
Zhu, Lingjun ;
Fu, Zan ;
Zhang, Zhengdon ;
Wang, Meilin .
CELL REPORTS MEDICINE, 2023, 4 (03)
[9]   IMPDH2 promotes colorectal cancer progression through activation of the PI3K/AKT/mTOR and PI3K/AKT/FOXO1 signaling pathways [J].
Duan, Shiyu ;
Huang, Wenqing ;
Liu, Xiaoting ;
Liu, Xuming ;
Chen, Nana ;
Xu, Qiong ;
Hu, Yukun ;
Song, Wen ;
Zhou, Jun .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2018, 37
[10]  
Elepano Anton, 2021, Asian Pac J Cancer Prev, V22, P3093, DOI 10.31557/APJCP.2021.22.10.3093