Neutronic Design Modification of Passive Compact-Molten Salt Reactor

被引:2
作者
Dwijayanto, R. A. P. [1 ]
Harto, A. W. [2 ]
机构
[1] BJ Habibie Sci & Technol Ctr, Res Org Nucl Energy, Res Ctr Nucl Reactor Technol, Natl Res & Innovat Agcy, Bldg 80, South Tangerang 15314, Indonesia
[2] Univ Gadjah Mada, Fac Engn, Dept Nucl Engn & Phys Engn, Jl Grafika 2, Yogyakarta 55281, Indonesia
关键词
PCMSR; Temperature coefficient of reactivity; Breeding ratio; MCNP; BREEDING FUEL-CYCLE; THORIUM; OPTIMIZATION; FEATURES; MCNP6;
D O I
10.55981/aij.2024.1308
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Passive compact molten salt reactor (PCMSR) is a design concept of a molten salt reactor (MSR) currently under development in Universitas Gadjah Mada, Indonesia. It is designed as a thermal breeder reactor using thorium fuel cycle. However, our previous study shows that the original PCMSR design was incorrectly modelled, primarily overestimating its thorium breeding capability. To improve PCMSR neutronic design, we modified the core configuration by the addition of radial fuel channel layers previously nonexistent in original PCMSR core design in various configurations. Neutronic parameters of modified PCMSR geometries in the beginning of life (BOL) were simulated using MCNP6.2 radiation transport code with ENDF/B-VII.0 library. All variations of fuel layer addition show improvement in both temperature coefficient of reactivity (TCR) and breeding ratio (BR), with TCR values became more negative and BR values are larger than unity, ensuring proper breeding capability. Configuration Inner Core -Outer Blanket (IC-OB) achieves the largest BR and lowest doubling time (DT), whilst its TCR is an improvement from the original design. Therefore, IC-OB fuel layer configuration can be applied to redesign the original PCMSR and used in various design optimization scenarios. (c) 2024 Atom Indonesia. All rights reserved
引用
收藏
页码:9 / 17
页数:9
相关论文
共 50 条
  • [31] Application of MELCOR for Simulating Molten Salt Reactor Accident Source Terms
    Gelbard, Fred
    Beeny, Bradley A.
    Humphries, Larry L.
    Wagner, Kenneth C.
    Albright, Lucas I.
    Poschmann, Max
    Piro, Markus H. A.
    NUCLEAR SCIENCE AND ENGINEERING, 2023, 197 (10) : 2723 - 2741
  • [32] Machine learning approaches to equilibrium burnup analysis for Molten Salt Reactor
    Chen, Shuning
    Zhou, Jun
    Cai, Xiangzhou
    Zou, Chunyan
    Chen, Jingen
    ANNALS OF NUCLEAR ENERGY, 2023, 192
  • [33] Burnup analysis of molten salt fast reactor based on mcnp and origen
    Zhang J.
    Zhang D.-L.
    Wang C.-L.
    Tian W.-X.
    Qiu S.-Z.
    Su G.-H.
    1600, Atomic Energy Press (51): : 2230 - 2234
  • [34] Examination of Molten Salt Reactor Relevant Elements Using Hydrothermal Synthesis
    Windorff, Cory J.
    Chemey, Alexander T.
    Sperling, Joseph M.
    Klamm, Bonnie E.
    Albrecht-Schmitt, Thomas E.
    INORGANIC CHEMISTRY, 2020, 59 (07) : 4176 - 4180
  • [35] Assessing the benefit of thorium fuel in a once through molten salt reactor
    Dwijayanto, R. Andika Putra
    Miftasani, Fitria
    Harto, Andang Widi
    PROGRESS IN NUCLEAR ENERGY, 2024, 176
  • [36] Whole core analysis of molten salt breeder reactor with online fuel reprocessing
    Park, Jinsu
    Jeong, Yongjin
    Lee, Hyun Chul
    Lee, Deokjung
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (12) : 1673 - 1680
  • [37] New primary energy source by thorium molten-salt reactor technology
    Furukawa, K
    Numata, H
    Kato, Y
    Mitachi, K
    Yoshioka, R
    Furuhashi, A
    Sato, Y
    Arakawa, K
    ELECTROCHEMISTRY, 2005, 73 (08) : 552 - 563
  • [38] Re-estimation of nuclear characteristics of a small molten salt power reactor
    Mitachi, K
    Okabayashi, D
    Suzuki, T
    Yoshioka, R
    JOURNAL OF THE ATOMIC ENERGY SOCIETY OF JAPAN, 2000, 42 (09): : 936 - 942
  • [39] Analysis of the Possibilities of Developing a Molten-Salt Blanket for a Subcritical Demonstration Reactor
    V. A. Nevinitsa
    A. A. Dudnikov
    A. A. Frolov
    A. S. Lubina
    A. A. Sedov
    V. Yu. Blandinskii
    A. L. Balanin
    I. A. Belov
    P. A. Fomichenko
    A. S. Subbotin
    S. A. Subbotin
    P. N. Alekseev
    A. M. Voloshchenko
    Yu. E. Titarenko
    V. F. Batyaev
    V. I. Rogov
    K. V. Pavlov
    A. Yu. Titarenko
    T. V. Kulevoy
    K. A. Gerasimov
    A. N. Didenko
    S. M. Polozov
    Atomic Energy, 2014, 117 : 14 - 18
  • [40] Development of fuel depletion code for molten salt reactor with very deep burnup
    Chen, Shuning
    Xia, Shaopeng
    Cai, Xiangzhou
    Zou, Chunyan
    Chen, Jingen
    PROGRESS IN NUCLEAR ENERGY, 2025, 178