Weakly-supervised Learning of Schrödinger Equation

被引:0
作者
Shiina, Kenta [1 ,2 ]
Lee, Hwee Kuan [2 ,3 ,4 ,5 ,6 ,7 ]
Okabe, Yutaka [1 ]
Mori, Hiroyuki [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
[2] ASTAR, Bioinformat Inst, 30 Biopolis St, Singapore 138671, Singapore
[3] Natl Univ Singapore, Sch Comp, 13 Comp Dr, Singapore 117417, Singapore
[4] Singapore Eye Res Inst SERI, 11 Third Hosp Ave, Singapore 168751, Singapore
[5] Image & Pervas Access Lab IPAL, 1 Fusionopolis Way, Singapore 138632, Singapore
[6] Rehabil Res Inst Singapore, 11 Mandalay Rd, Singapore 308232, Singapore
[7] Singapore Inst Clin Sci SICS, 30 Med Dr, Singapore 117609, Singapore
基金
日本学术振兴会;
关键词
NEURAL-NETWORKS;
D O I
10.7566/JPSJ.93.064002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a machine learning method to solve Schr & ouml;dinger equations for Hamiltonians with perturbations. We focus on the cases where the unperturbed Hamiltonian can be solved analytically or numerically in some fast way. Using a perturbation potential function as input, our deep learning model predicts wave functions and energies efficiently. Training uses only the first-order perturbation energies on a training set to guide the convergence to the correction solutions. No label (or no exact solution) is used for the training, meaning that this is not a fully supervised method but rather a weakly supervised method since first-order perturbation energies are used to guide the learning. As an example, we calculated wave functions and energies of a harmonic oscillator with a perturbation, and the results were in good agreement with those obtained from exact diagonalization.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures [J].
Ahufinger, V ;
Sanchez-Palencia, L ;
Kantian, A ;
Sanpera, A ;
Lewenstein, M .
PHYSICAL REVIEW A, 2005, 72 (06)
[2]   Deep Neural Network Detects Quantum Phase Transition [J].
Arai, Shunta ;
Ohzeki, Masayuki ;
Tanaka, Kazuyuki .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (03)
[3]   Machine learning vortices at the Kosterlitz-Thouless transition [J].
Beach, Matthew J. S. ;
Golubeva, Anna ;
Melko, Roger G. .
PHYSICAL REVIEW B, 2018, 97 (04)
[4]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605
[5]  
Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/nphys4035, 10.1038/NPHYS4035]
[6]   Machine Learning Phases of Strongly Correlated Fermions [J].
Ch'ng, Kelvin ;
Carrasquilla, Juan ;
Melko, Roger G. ;
Khatami, Ehsan .
PHYSICAL REVIEW X, 2017, 7 (03)
[7]  
Chen R. T. Q., 2019, PROC 32 C NEURAL INF
[8]   SOLUTION OF THE SCHRODINGER-EQUATION BY A SPECTRAL METHOD [J].
FEIT, MD ;
FLECK, JA ;
STEIGER, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 47 (03) :412-433
[9]   Solving many-electron Schrodinger equation using deep neural networks [J].
Han, Jiequn ;
Zhang, Linfeng ;
E, Weinan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 399
[10]   Accelerated Monte Carlo simulations with restricted Boltzmann machines [J].
Huang, Li ;
Wang, Lei .
PHYSICAL REVIEW B, 2017, 95 (03)