Non-metric fields from quantum gravity

被引:0
|
作者
Ghosh, Kaushik [1 ]
机构
[1] Vivekananda Coll, Kolkata 700091, W Bengal, India
来源
15TH MARCEL GROSSMANN MEETING, PT A | 2022年
关键词
quantization; connections; non-metricity; scalar fields;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this manuscript, we will discuss the construction of covariant derivative operator in quantum gravity. We will find it is more perceptive to use affine connections more general than metric compatible connections in quantum gravity. We will demonstrate this using the canonical quantization procedure. This is valid irrespective of the presence and nature of sources. General affine connections can introduce new scalar fields in gravity.
引用
收藏
页码:641 / 646
页数:6
相关论文
共 50 条
  • [21] Accelerating and decelerating cosmology from spinor and scalar fields non-minimally coupled with f(R) gravity
    Rybalov, Y. A.
    Makarenko, A. N.
    Osetrin, K. E.
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 349 (01) : 561 - 566
  • [22] Accelerating and decelerating cosmology from spinor and scalar fields non-minimally coupled with f(R) gravity
    Y. A. Rybalov
    A. N. Makarenko
    K. E. Osetrin
    Astrophysics and Space Science, 2014, 349 : 561 - 566
  • [23] The length operator in Loop Quantum Gravity
    Bianchi, Eugenio
    NUCLEAR PHYSICS B, 2009, 807 (03) : 591 - 624
  • [24] A short review of loop quantum gravity
    Ashtekar, Abhay
    Bianchi, Eugenio
    REPORTS ON PROGRESS IN PHYSICS, 2021, 84 (04)
  • [25] The dynamics of metric-affine gravity
    Vitagliano, Vincenzo
    Sotiriou, Thomas P.
    Liberati, Stefano
    ANNALS OF PHYSICS, 2011, 326 (05) : 1259 - 1273
  • [26] Effective relational cosmological dynamics from quantum gravity
    Marchetti, Luca
    Oriti, Daniele
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
  • [27] Quantum geometry from 2+1 AdS quantum gravity on the torus
    Nelson, J. E.
    Picken, R. F.
    GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (03) : 777 - 795
  • [28] Quantum gravity and the cosmological constant: Lessons from two-dimensional dilaton gravity
    Govaerts, Jan
    Zonetti, Simone
    PHYSICAL REVIEW D, 2013, 87 (08):
  • [29] Bouncing evolution in a model of loop quantum gravity
    Zhang, Cong
    Lewandowski, Jerzy
    Li, Haida
    Ma, Yongge
    PHYSICAL REVIEW D, 2019, 99 (12):
  • [30] Quantum Computation Toward Quantum Gravity
    P. A. Zizzi
    General Relativity and Gravitation, 2001, 33 : 1305 - 1318