Integrating Machine Learning into an SMT-Based Planning Approach for Production Planning in Cyber-Physical Production Systems

被引:0
|
作者
Heesch, Rene [1 ]
Ehrhardt, Jonas [1 ]
Niggemann, Oliver [1 ]
机构
[1] Helmut Schmidt Univ, Hamburg, Germany
来源
ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 2, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023 | 2024年 / 1948卷
关键词
AI Planning; Cyber-Physical Production System; Machine Learning; SMT;
D O I
10.1007/978-3-031-50485-3_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cyber-Physical Production Systems (CPPS) are highly complex systems, making the application of AI planning approaches for production planning challenging. Most AI planning approaches require comprehensive domain descriptions, which model the functional dependencies within the CPPS. Though, due to their high complexity, creating such domain descriptions manually is considered difficult, tedious, and error-prone. Therefore, we propose a novel generic planning approach, which can integrate mathematical formulas or Machine Learning models into a symbolic SMT-based planning algorithm, thus shedding the need for complex manually created models. Our approach uses a feature-vector-based state-space representation as an interface of symbolic and sub-symbolic AI, and can identify a solution to CPPS planning problems by determining the required production steps, their sequence, and their parametrization. We evaluate our approach on twelve planning problems from a real CPPS, demonstrating its ability to express complex dependencies within production steps as mathematical formulas or integrating ML models.
引用
收藏
页码:318 / 331
页数:14
相关论文
共 50 条
  • [1] Learning Process Steps as Dynamical Systems for a Sub-Symbolic Approach of Process Planning in Cyber-Physical Production Systems
    Ehrhardt, Jonas
    Heesch, Rene
    Niggemann, Oliver
    ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 2, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1948 : 332 - 345
  • [2] Cyber-Physical Production Systems Combined with Logistic Models - A Learning Factory Concept for an Improved Production Planning and Control
    Seitz, Kai-Frederic
    Nyhuis, Peter
    5TH CONFERENCE ON LEARNING FACTORIES, 2015, 32 : 92 - 97
  • [3] A Holistic Quality Assurance Approach for Machine Learning Applications in Cyber-Physical Production Systems
    Wiemer, Hajo
    Dementyev, Alexander
    Ihlenfeldt, Steffen
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [4] On Valuing the Impact of Machine Learning Faults to Cyber-Physical Production Systems
    Cody, Tyler
    Adams, Stephen
    Beling, Peter
    Freeman, Laura
    2022 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2022), 2022, : 140 - 145
  • [5] Proposing A Cyber-Physical Production Systems Framework Linking Factory Planning And Factory Operation
    Langer, Adrian
    Ortmeier, Christian
    Abraham, Tim
    Herrmann, Christoph
    PROCEEDINGS OF THE CONFERENCE ON PRODUCTION SYSTEMS AND LOGISTICS, CPSL 2023-1, 2023, : 149 - 158
  • [6] Rule-Based With Machine Learning IDS for DDoS Attack Detection in Cyber-Physical Production Systems (CPPS)
    Hussain, Ayaz
    Marin Tordera, Eva
    Masip-Bruin, Xavi
    Leligou, Helen C.
    IEEE ACCESS, 2024, 12 : 114894 - 114911
  • [7] Machine Learning Approach to Production Order Planning A Paper to the Implementation of a Machine Learning Algorithm in Production
    Mielke J.
    Winkler H.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2022, 117 (06): : 384 - 389
  • [8] On a containerized approach for the dynamic planning and control of a cyber - physical production system
    Nikolakis, Nikolaos
    Senington, Richard
    Sipsas, Konstantinos
    Syberfeldt, Anna
    Makris, Sotiris
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2020, 64
  • [9] A generic learning simulation framework to assess security strategies in cyber-physical production systems
    Koita, Moussa
    Diagana, Youssouf M.
    Maiga, Oumar Y.
    Traore, Mamadou K.
    COMPUTER NETWORKS, 2022, 218
  • [10] Explainable Unsupervised Machine Learning for Cyber-Physical Systems
    Wickramasinghe, Chathurika S.
    Amarasinghe, Kasun
    Marino, Daniel L.
    Rieger, Craig
    Manic, Milos
    IEEE ACCESS, 2021, 9 : 131824 - 131843