Master stability functions of networks of Izhikevich neurons

被引:2
作者
Aristides, Raul P. [1 ]
Cerdeira, Hilda A. [1 ,2 ]
机构
[1] Sao Paulo State Univ UNESP, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, Brazil
[2] Gomez & Gomez Ltda ME, Epistem, Rua Paulo Franco 520, BR-05305031 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
LYAPUNOV EXPONENTS; RIDDLED BASINS; SYNCHRONIZATION; MODEL; DESYNCHRONIZATION;
D O I
10.1103/PhysRevE.109.044213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Synchronization has attracted interest in many areas where the systems under study can be described by complex networks. Among such areas is neuroscience, where it is hypothesized that synchronization plays a role in many functions and dysfunctions of the brain. We study the linear stability of synchronized states in networks of Izhikevich neurons using master stability functions (MSFs), and to accomplish that, we exploit the formalism of saltation matrices. Such a tool allows us to calculate the Lyapunov exponents of the MSF properly since the Izhikevich model displays a discontinuity within its spikes. We consider both electrical and chemical couplings as well as global and cluster synchronized states. The MSF calculations are compared with a measure of the synchronization error for simulated networks. We give special attention to the case of electric and chemical coupling, where a riddled basin of attraction makes the synchronized solution more sensitive to perturbations.
引用
收藏
页数:13
相关论文
共 43 条
[31]   QUANTITATIVE METHODS FOR PREDICTING NEURONAL BEHAVIOR [J].
PERKEL, DH ;
MULLONEY, B ;
BUDELLI, RW .
NEUROSCIENCE, 1981, 6 (05) :823-837
[32]  
Purves D., 2009, NEUROSCIENCE, V4th
[33]   Single rodent mesohabenular axons release glutamate and GABA [J].
Root, David H. ;
Mejias-Aponte, Carlos A. ;
Zhang, Shiliang ;
Wang, Hui-Ling ;
Hoffman, Alexander F. ;
Lupica, Carl R. ;
Morales, Marisela .
NATURE NEUROSCIENCE, 2014, 17 (11) :1543-1551
[34]  
Rossa F. D., 2020, Nat. Commun., V11
[35]   Graph partitions and cluster synchronization in networks of oscillators [J].
Schaub, Michael T. ;
O'Clery, Neave ;
Billeh, Yazan N. ;
Delvenne, Jean-Charles ;
Lambiotte, Renaud ;
Barahona, Mauricio .
CHAOS, 2016, 26 (09)
[36]   NUMERICAL APPROACH TO ERGODIC PROBLEM OF DISSIPATIVE DYNAMICAL-SYSTEMS [J].
SHIMADA, I ;
NAGASHIMA, T .
PROGRESS OF THEORETICAL PHYSICS, 1979, 61 (06) :1605-1616
[37]   RAPID SYNCHRONIZATION THROUGH FAST THRESHOLD MODULATION [J].
SOMERS, D ;
KOPELL, N .
BIOLOGICAL CYBERNETICS, 1993, 68 (05) :393-407
[38]   Complete characterization of the stability of cluster synchronization in complex dynamical networks [J].
Sorrentino, Francesco ;
Pecora, Louis M. ;
Hagerstrom, Aaron M. ;
Murphy, Thomas E. ;
Roy, Rajarshi .
SCIENCE ADVANCES, 2016, 2 (04)
[39]   Master stability functions for coupled nearly identical dynamical systems [J].
Sun, J. ;
Bollt, E. M. ;
Nishikawa, T. .
EPL, 2009, 85 (06)
[40]   Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology [J].
Uhhaas, Peter J. ;
Singer, Wolf .
NEURON, 2006, 52 (01) :155-168