Optimising Linear Regression for Modelling the Dynamic Thermal Behaviour of Electrical Machines using NSGA-II, NSGA-III and MOEA/D

被引:0
作者
Banda, Tiwonge Msulira [1 ]
Zavoianu, Alexandru-Ciprian [1 ]
Petrovski, Andrei [1 ]
Woeckinger, Daniel [2 ]
Bramerdorfer, Gerd [2 ]
机构
[1] Robert Gordon Univ, Sch Comp, Natl Subsea Ctr, Aberdeen, Scotland
[2] Johannes Kepler Univ Linz, Inst Elect Drives & Power Elect, Linz, Austria
来源
2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023 | 2023年
关键词
data-driven thermal models; electrical machines; linear regression; cost vs accuracy; NSGA-II; NSGA-III; MOEA/D; MULTIOBJECTIVE OPTIMIZATION; ALGORITHM;
D O I
10.1109/SYNASC61333.2023.00032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For engineers to create durable and effective electrical assemblies, modelling and controlling heat transfer in rotating electrical machines (such as motors) is crucial. In this paper, we compare the performance of three multi-objective evolutionary algorithms, namely NSGA-II, NSGA-III, and MOEA/D in finding the best trade-offs between data collection costs/effort and expected modelling errors when creating low-complexity Linear Regression (LR) models that can accurately estimate key motor component temperatures under various operational scenarios. The algorithms are integrated into a multi-objective thermal modelling strategy that aims to guide the discovery of models that are suitable for microcontroller deployment. Our findings show that while NSGA-II and NSGA-III yield comparably good optimisation outcomes, with a slight, but statistically significant edge for NSGA-II, the results achieved by MOEA/D for this use case are below par.
引用
收藏
页码:186 / 193
页数:8
相关论文
共 34 条
[1]  
Banda T. M., 2023, ACM T EVOLUTIONARY L
[2]  
Barksdale H, 2018, IEEE SOUTHEASTCON
[3]   jMetalPy: A Python']Python framework for multi-objective optimization with metaheuristics [J].
Benitez-Hidalgo, Antonio ;
Nebro, Antonio J. ;
Garcia-Nieto, Jose ;
Oregi, Izaskun ;
Del Ser, Javier .
SWARM AND EVOLUTIONARY COMPUTATION, 2019, 51
[4]   Electrical Machines Thermal Model: Advanced Calibration Techniques [J].
Boglietti, Aldo ;
Cossale, Marco ;
Popescu, Mircea ;
Staton, David Alan .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (03) :2620-2628
[5]   Evolution and Modern Approaches for Thermal Analysis of Electrical Machines [J].
Boglietti, Aldo ;
Cavagnino, Andrea ;
Staton, David ;
Shanel, Martin ;
Mueller, Markus ;
Mejuto, Carlos .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (03) :871-882
[6]   An axial-flux permanent-magnet generator for a gearless wind energy system [J].
Chalmers, BJ ;
Wu, W ;
Spooner, E .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 1999, 14 (02) :251-257
[7]  
Chen JH, 2019, IEEE ENER CONV, P5265, DOI [10.1109/ECCE.2019.8912543, 10.1109/ecce.2019.8912543]
[8]  
Coello C.A.C., 2007, Evolutionary Algorithms for Solving Multi-Objective Problems
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]  
Deb K., 1995, Complex Systems, V9, P115