Simultaneous Velocity and Texture Classification from a Neuromorphic Tactile Sensor Using Spiking Neural Networks

被引:2
作者
Brayshaw, George [1 ,2 ]
Ward-Cherrier, Benjamin [1 ]
Pearson, Martin J. [2 ]
机构
[1] Univ Bristol, Sch Engn Math & Technol, Bristol BS8 1QU, England
[2] Univ West England, Sch Engn, Bristol BS16 1QY, England
基金
英国工程与自然科学研究理事会;
关键词
neuromorphic; tactile sensing; robotics;
D O I
10.3390/electronics13112159
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The neuroTac, a neuromorphic visuo-tactile sensor that leverages the high temporal resolution of event-based cameras, is ideally suited to applications in robotic manipulators and prosthetic devices. In this paper, we pair the neuroTac with Spiking Neural Networks (SNNs) to achieve a movement-invariant neuromorphic tactile sensing method for robust texture classification. Alongside this, we demonstrate the ability of this approach to extract movement profiles from purely tactile data. Our systems achieve accuracies of 95% and 83% across their respective tasks (texture and movement classification). We then seek to reduce the size and spiking activity of our networks with the aim of deployment to edge neuromorphic hardware. This multi-objective optimisation investigation using Pareto frontiers highlights several design trade-offs, where high activity and large network sizes can both be reduced by up to 68% and 94% at the cost of slight decreases in accuracy (8%).
引用
收藏
页数:16
相关论文
共 56 条
[1]   Neuromorphic Tactile Sensing System for Textural Features Classification [J].
Ali, Haydar Al Haj ;
Abbass, Yahya ;
Gianoglio, Christian ;
Ibrahim, Ali ;
Oh, Changjae ;
Valle, Maurizio .
IEEE SENSORS JOURNAL, 2024, 24 (10) :17193-17207
[2]  
Bekiroglu Y, 2013, IEEE INT CONF ROBOT, P3040, DOI 10.1109/ICRA.2013.6630999
[3]  
Björkman M, 2013, IEEE INT C INT ROBOT, P3180, DOI 10.1109/IROS.2013.6696808
[4]   Speed invariance of tactile texture perception [J].
Boundy-Singer, Zoe M. ;
Saal, Hannes P. ;
Bensmaia, Sliman J. .
JOURNAL OF NEUROPHYSIOLOGY, 2017, 118 (04) :2371-2377
[5]   A 240 x 180 130 dB 3 μs Latency Global Shutter Spatiotemporal Vision Sensor [J].
Brandli, Christian ;
Berner, Raphael ;
Yang, Minhao ;
Liu, Shih-Chii ;
Delbruck, Tobi .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (10) :2333-2341
[6]  
Brayshaw G., 2024, P 2024 IEEE INT C RO
[7]   Temporal and Spatio-temporal domains for Neuromorphic Tactile Texture Classification [J].
Brayshaw, George ;
Ward-Cherrier, Benjamin ;
Pearson, Martin .
PROCEEDINGS OF THE 2022 ANNUAL NEURO-INSPIRED COMPUTATIONAL ELEMENTS CONFERENCE (NICE 2022), 2022, :50-57
[8]   Incipient slip detection with a biomimetic skin morphology [J].
Bulens, David Cordova ;
Lepora, Nathan F. ;
Redmond, Stephen J. ;
Ward-Cherrier, Benjamin .
2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, :8972-8978
[9]   Kinematics of unconstrained tactile texture exploration [J].
Callier, Thierri ;
Saal, Hannes P. ;
Davis-Berg, Elizabeth C. ;
Bensmaia, Sliman J. .
JOURNAL OF NEUROPHYSIOLOGY, 2015, 113 (07) :3013-3020
[10]   Multimodal zero-shot learning for tactile texture recognition ☆ [J].
Cao, Guanqun ;
Jiang, Jiaqi ;
Bollegala, Danushka ;
Li, Min ;
Luo, Shan .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 176