Efficient Sleep-Wake Cycle Staging via Phase-Amplitude Coupling Pattern Classification

被引:0
作者
Cota, Vinicius Rosa [1 ]
Del Corso, Simone [2 ]
Federici, Gianluca [2 ]
Arnulfo, Gabriele [2 ]
Chiappalone, Michela [1 ,2 ]
机构
[1] Ist Italiano Tecnol, Rehab Technol Lab, Via Morego 30, I-16163 Genoa, Italy
[2] Univ Genoa, Dept Informat Bioengn Robot Syst Engn DIBRIS, Via allOpera Pia 13, I-16145 Genoa, Italy
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 13期
关键词
slow-wave sleep; REM sleep; wakefulness; cross-frequency coupling; neural synchronizations; modulation index; multilayer perceptron; signal processing; CORTEX;
D O I
10.3390/app14135816
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The objective and automatic detection of the sleep-wake cycle (SWC) stages is essential for the investigation of its physiology and dysfunction. Here, we propose a machine learning model for the classification of SWC stages based on the measurement of synchronization between neural oscillations of different frequencies. Publicly available electrophysiological recordings of mice were analyzed for the computation of phase-amplitude couplings, which were then supplied to a multilayer perceptron (MLP). Firstly, we assessed the performance of several architectures, varying among different input choices and numbers of neurons in the hidden layer. The top performing architecture was then tested using distinct extrapolation strategies that would simulate applications in a real lab setting. Although all the different choices of input data displayed high AUC values (>0.85) for all the stages, the ones using larger input datasets performed significantly better. The top performing architecture displayed high AUC values (>0.95) for all the extrapolation strategies, even in the worst-case scenario in which the training with a single day and single animal was used to classify the rest of the data. Overall, the results using multiple performance metrics indicate that the usage of a basic MLP fed with highly descriptive features such as neural synchronization is enough to efficiently classify SWC stages.
引用
收藏
页数:18
相关论文
共 39 条
[1]   Memory corticalization triggered by REM sleep: mechanisms of cellular and systems consolidation [J].
Almeida-Filho, Daniel G. ;
Queiroz, Claudio M. ;
Ribeiro, Sidarta .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2018, 75 (20) :3715-3740
[2]   Long-range phase synchronization of high-frequency oscillations in human cortex [J].
Arnulfo, G. ;
Wang, S. H. ;
Myrov, V ;
Toselli, B. ;
Hirvonen, J. ;
Fato, M. M. ;
Nobili, L. ;
Cardinale, F. ;
Rubino, A. ;
Zhigalov, A. ;
Palva, S. ;
Palva, J. M. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Phase and amplitude correlations in resting-state activity in human stereotactical EEG recordings [J].
Arnulfo, Gabriele ;
Hirvonen, Jonni ;
Nobili, Lino ;
Palva, Satu ;
Palva, J. Matias .
NEUROIMAGE, 2015, 112 :114-127
[4]  
Arrigoni E, 2019, HBK BEHAV NEUROSCI, V30, P65, DOI 10.1016/B978-0-12-813743-7.00005-0
[5]   The Functions of Sleep [J].
Assefa, Samson Z. ;
Diaz-Abad, Montserrat ;
Wickwire, Emerson M. ;
Scharf, Steven M. .
AIMS NEUROSCIENCE, 2015, 2 (03) :155-171
[6]   Robust, automated sleep scoring by a compact neural network with distributional shift correction [J].
Barger, Zeke ;
Frye, Charles G. ;
Liu, Danqian ;
Dan, Yang ;
Bouchard, Kristofer E. .
PLOS ONE, 2019, 14 (12)
[7]   Sleep Deprivation and Neurological Disorders [J].
Bishir, Muhammed ;
Bhat, Abid ;
Essa, Musthafa Mohamed ;
Ekpo, Okobi ;
Ihunwo, Amadi O. ;
Veeraraghavan, Vishnu Priya ;
Mohan, Surapaneni Krishna ;
Mahalakshmi, Arehally M. ;
Ray, Bipul ;
Tuladhar, Sunanda ;
Chang, Sulie ;
Chidambaram, Saravana Babu ;
Sakharkar, Meena Kishore ;
Guillemin, Gilles J. ;
Qoronfleh, M. Walid ;
Ojcius, David J. .
BIOMED RESEARCH INTERNATIONAL, 2020, 2020
[8]   CONTROL OF SLEEP AND WAKEFULNESS [J].
Brown, Ritchie E. ;
Basheer, Radhika ;
McKenna, James T. ;
Strecker, Robert E. ;
McCarley, Robert W. .
PHYSIOLOGICAL REVIEWS, 2012, 92 (03) :1087-1187
[9]   The functional role of cross-frequency coupling [J].
Canolty, Ryan T. ;
Knight, Robert T. .
TRENDS IN COGNITIVE SCIENCES, 2010, 14 (11) :506-515
[10]   Towards automated sleep-stage classification for adaptive deep brain stimulation targeting sleep in patients with Parkinson's disease [J].
Carver, Katrina ;
Saltoun, Karin ;
Christensen, Elijah ;
Abosch, Aviva ;
Zylberberg, Joel ;
Thompson, John A. .
COMMUNICATIONS ENGINEERING, 2023, 2 (01)