Source-free domain adaptation for semantic image segmentation using internal representations

被引:2
作者
Stan, Serban [1 ]
Rostami, Mohammad [1 ]
机构
[1] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA 90007 USA
来源
FRONTIERS IN BIG DATA | 2024年 / 7卷
关键词
domain adaptation; Gaussian mixture model (GMM); optimal transport and Wasserstein distances; sliced Wasserstein distance; image segmentation;
D O I
10.3389/fdata.2024.1359317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation models trained on annotated data fail to generalize well when the input data distribution changes over extended time period, leading to requiring re-training to maintain performance. Classic unsupervised domain adaptation (UDA) attempts to address a similar problem when there is target domain with no annotated data points through transferring knowledge from a source domain with annotated data. We develop an online UDA algorithm for semantic segmentation of images that improves model generalization on unannotated domains in scenarios where source data access is restricted during adaptation. We perform model adaptation by minimizing the distributional distance between the source latent features and the target features in a shared embedding space. Our solution promotes a shared domain-agnostic latent feature space between the two domains, which allows for classifier generalization on the target dataset. To alleviate the need of access to source samples during adaptation, we approximate the source latent feature distribution via an appropriate surrogate distribution, in this case a Gaussian mixture model (GMM).
引用
收藏
页数:16
相关论文
共 79 条
[1]  
[Anonymous], 1995, HDB BRAIN THEORY NEU
[2]  
Arjovsky M, 2017, Arxiv, DOI [arXiv:1701.07875, 10.48550/arXiv.1701.07875]
[3]   Unsupervised Domain Adaptation Using Generative Adversarial Networks for Semantic Segmentation of Aerial Images [J].
Benjdira, Bilel ;
Bazi, Yakoub ;
Koubaa, Anis ;
Ouni, Kais .
REMOTE SENSING, 2019, 11 (11)
[4]   Optimization Methods for Large-Scale Machine Learning [J].
Bottou, Leon ;
Curtis, Frank E. ;
Nocedal, Jorge .
SIAM REVIEW, 2018, 60 (02) :223-311
[5]   Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks [J].
Bousmalis, Konstantinos ;
Silberman, Nathan ;
Dohan, David ;
Erhan, Dumitru ;
Krishnan, Dilip .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :95-104
[6]   Semantic-Aware Generative Adversarial Nets for Unsupervised Domain Adaptation in Chest X-Ray Segmentation [J].
Chen, Cheng ;
Dou, Qi ;
Chen, Hao ;
Heng, Pheng-Ann .
MACHINE LEARNING IN MEDICAL IMAGING: 9TH INTERNATIONAL WORKSHOP, MLMI 2018, 2018, 11046 :143-151
[7]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[8]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[9]   No More Discrimination: Cross City Adaptation of Road Scene Segmenters [J].
Chen, Yi-Hsin ;
Chen, Wei-Yu ;
Chen, Yu-Ting ;
Tsai, Bo-Cheng ;
Wang, Yu-Chiang Frank ;
Sun, Min .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2011-2020
[10]   Learning Semantic Segmentation from Synthetic Data: A Geometrically Guided Input-Output Adaptation Approach [J].
Chen, Yuhua ;
Li, Wen ;
Chen, Xiaoran ;
Van Gool, Luc .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1841-1850