FRESHNets: Highly Accurate and Efficient Food Freshness Assessment Based on Deep Convolutional Neural Networks

被引:1
作者
Pazos, Jorge Gulin Martinez [1 ,2 ]
Gonzalez, Jorge Gulin [1 ]
Lorenzo, David Batard [1 ]
Garcia, Arturo Orellana [2 ]
机构
[1] Univ Informat Sci, CEMC Study Ctr Computat Math, Havana, Cuba
[2] Univ Informat Sci, CESIM, Ctr Med Informat, Havana, Cuba
来源
INTELIGENCIA ARTIFICIAL-IBEROAMERICAN JOURNAL OF ARTIFICIAL INTELLIGENCE | 2024年 / 27卷 / 74期
关键词
Convolutional Neural Networks; Deep Learning; Food Freshness Classification; Xception;
D O I
10.4114/intartif.vol27iss74pp47-61
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Food freshness classification is a growing concern in the food industry, mainly to protect consumer health and prevent illness and poisoning from consuming spoiled food. Intending to take a significant step towards improving food safety and quality control measures in the industry, this study presents two models based on deep learning for the classification of fruit and vegetable freshness: a robust model and an efficient model. Models' performance evaluation shows remarkable results; in terms of accuracy, the robust model and the efficient model achieved 97.6% and 94.0% respectively, while in terms of Area Under the Curve (AUC) score, both models achieved more than 99%, with the difference in inference time between each model over 844 images being 13 seconds.
引用
收藏
页码:48 / 61
页数:14
相关论文
共 18 条
  • [1] Automatic Fruits Freshness Classification Using CNN and Transfer Learning
    Amin, Umer
    Shahzad, Muhammad Imran
    Shahzad, Aamir
    Shahzad, Mohsin
    Khan, Uzair
    Mahmood, Zahid
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [2] Anupriya K., 2022, Cognitive Informatics and Soft Computing: Proceeding of CISC 2021. Lecture Notes in Networks and Systems (375), P633, DOI 10.1007/978-981-16-8763-1_52
  • [3] Cenggoro T.W., 2021, IOP C SER EARTH ENV, V794, P012110, DOI [10.1088/1755-1315/794/1/012110, DOI 10.1088/1755-1315/794/1/012110]
  • [4] Fei-Fei Li, 2009, ImageNet
  • [5] Gavrikov P., 2020, visualkeras. GitHub repository
  • [6] AI-based fruit identification and quality detection system
    Goyal, Kashish
    Kumar, Parteek
    Verma, Karun
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (16) : 24573 - 24604
  • [7] Hinton G.E., 2012, arXiv, DOI [DOI 10.48550/ARXIV.1207.0580, 10.48550/arXiv.1207.0580]
  • [8] Ioffe S, 2015, PR MACH LEARN RES, V37, P448
  • [9] Ensemble of multi-task deep convolutional neural networks using transfer learning for fruit freshness classification
    Kang, Jaeyong
    Gwak, Jeonghwan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (16) : 22355 - 22377
  • [10] keras, KERAS API REFERENCE