Modulatory Effects of Lactobacillus paracasei-Fermented Turmeric on Metabolic Dysregulation and Gut Microbiota in High-Fat Diet-Induced Obesity in Mice

被引:3
作者
Lin, Wei-Sheng [1 ,2 ]
Hwang, Siao-En [2 ]
Koh, Yen-Chun [2 ]
Ho, Pin-Yu [2 ]
Pan, Min-Hsiung [2 ,3 ,4 ]
机构
[1] Natl Quemoy Univ, Dept Food Sci, Quemoy 89250, Taiwan
[2] Natl Taiwan Univ, Inst Food Sci & Technol, Taipei 10617, Taiwan
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Hlth & Nutr Biotechnol, Taichung 41354, Taiwan
关键词
obesity; Lactobacillus paracasei; turmeric; fermented turmeric; gut microbiota; INSULIN-RESISTANCE; LIVER-DISEASE; INHIBITS ADIPOGENESIS; ADIPOCYTES; PRODUCTS; PATHWAY; ACID;
D O I
10.1021/acs.jafc.4c01501
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Turmeric, derived from Curcuma longa, and Lactobacillus paracasei, a lactic acid bacteria, have been studied for their potential antiobesity effects. To date, the antiobesity effects of turmeric fermented with L. paracasei have not been sufficiently investigated. This study was conducted via oral administration of 5% L. paracasei-fermented (FT) and unfermented turmeric (UT) in diet over 16 weeks using high-fat diet (HFD)-induced obese C57BL/6J mice. Results showed that the curcuminoid content of turmeric decreased following fermentation. Furthermore, FT significantly suppressed weight gain and liver and visceral adipose tissue weight and reduced plasma metabolic parameters in both the UT and FT experimental groups. The effects of FT were more noticeable than those of the unfermented form. Moreover, FT downregulated the expression of adipogenesis, lipogenesis, and inflammatory-related protein, but upregulated liver beta-oxidation protein SIRT 1, PPAR alpha, and PGC-1 alpha in perigonadal adipose tissue. Additionally, FT ameliorated insulin resistance by activating insulin receptor pathway protein expressions in visceral adipose tissues. FT also modulated gut microbiota composition, particularly in two beneficial bacteria, Akkermansia muciniphila and Desulfovibrio, as well as two short-chain fatty acid-producing bacteria: Muribaculum intestinale and Deltaproteobacteria. Our findings indicate that the modulation effect of FT may be an important pathway for its antiobesity mechanisms.
引用
收藏
页码:17924 / 17937
页数:14
相关论文
共 50 条
  • [21] Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier
    Zhou, Da
    Pan, Qin
    Xin, Feng-Zhi
    Zhang, Rui-Nan
    He, Chong-Xin
    Chen, Guang-Yu
    Liu, Chang
    Chen, Yuan-Wen
    Fan, Jian-Gao
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2017, 23 (01) : 60 - 75
  • [22] The crude guava polysaccharides ameliorate high-fat diet-induced obesity in mice via reshaping gut microbiota
    Li, Yuanyuan
    Bai, Dongsong
    Lu, Yongming
    Chen, Jia
    Yang, Haoning
    Mu, Yu
    Xu, Jialin
    Huang, Xueshi
    Li, Liya
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 213 : 234 - 246
  • [23] High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice
    Cai, Haiying
    Zhang, Junhui
    Liu, Chang
    Le, Thanh Ninh
    Lu, Yuyun
    Feng, Fengqin
    Zhao, Minjie
    [J]. FOODS, 2024, 13 (05)
  • [24] Hydroxytyrosol Improves Obesity and Insulin Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Liu, Zhuoqun
    Wang, Ningning
    Ma, Yanan
    Wen, Deliang
    [J]. FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [25] Mulberry leaf extract ameliorates high-fat diet-induced obesity in mice by regulating the gut microbiota and metabolites
    Pan, Ya
    Song, Yishan
    Zhao, Minjie
    Yang, Mengyu
    Xiao, Nanhai
    Wang, Jing
    Feng, Fengqin
    [J]. FOOD BIOSCIENCE, 2024, 62
  • [26] Red Wine High-Molecular-Weight Polyphenolic Complex Ameliorates High-Fat Diet-Induced Metabolic Dysregulation and Perturbation in Gut Microbiota in Mice
    Suo, Hao
    Shishir, Mohammad Rezaul Islam
    Wang, Qi
    Wang, Mingfu
    Chen, Feng
    Cheng, Ka Wing
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (18) : 6882 - 6893
  • [27] Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice
    Luo, Shiyue
    Zhou, Lixiao
    Jiang, Xuejun
    Xia, Yinyin
    Huang, Lishuang
    Ling, Run
    Tang, Shixin
    Zou, Zhen
    Chen, Chengzhi
    Qiu, Jingfu
    [J]. FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [28] Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice
    Dianzhi Hou
    Qingyu Zhao
    Laraib Yousaf
    Yong Xue
    Qun Shen
    [J]. European Journal of Nutrition, 2021, 60 : 2029 - 2045
  • [29] Lactobacillus plantarum FRT4 alleviated obesity by modulating gut microbiota and liver metabolome in high-fat diet-induced obese mice
    Cai, Hongying
    Wen, Zhiguo
    Zhao, Lulu
    Yu, Dali
    Meng, Kun
    Yang, Peilong
    [J]. FOOD & NUTRITION RESEARCH, 2022, 66
  • [30] Effect of fermented bee pollen on metabolic syndrome in high-fat diet-induced mice
    Yan, Sha
    Wang, Kai
    Wang, Xiaoying
    Ou, Aiqun
    Wang, Feiran
    Wu, Liming
    Xue, Xiaofeng
    [J]. FOOD SCIENCE AND HUMAN WELLNESS, 2021, 10 (03) : 345 - 355