Laplacian and Wiener index of extension of zero divisor graph

被引:0
作者
Bora, Pallabi [1 ]
Rajkhowa, Kukil Kalpa [1 ]
机构
[1] Cotton Univ Guwahati, Dept Math, Gauhati 781001, India
关键词
Laplacian matrix; Laplacian spectrum; Zero divisor; Wiener index;
D O I
10.1016/j.dam.2024.05.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to study the Laplacian eigenvalues of the extension of the zero divisor graph, Gamma e ( Z n ) , for some particular values of n . We characterize the values of n that give the equality of the spectral radius and the second -smallest eigenvalue of Gamma e ( Z n ). Finding Wiener index of Gamma e ( Z n ) in terms of its Laplacian eigenvalues is another objective of this paper. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:229 / 237
页数:9
相关论文
共 13 条
  • [1] The total graph of a commutative ring
    Anderson, David F.
    Badawi, Ayman
    [J]. JOURNAL OF ALGEBRA, 2008, 320 (07) : 2706 - 2719
  • [2] The zero-divisor graph of a commutative ring
    Anderson, DF
    Livingston, PS
    [J]. JOURNAL OF ALGEBRA, 1999, 217 (02) : 434 - 447
  • [3] The Wiener index of the zero-divisor graph of Zn
    Asir, T.
    Rabikka, V
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 319 : 461 - 471
  • [4] Bapat R.B., 2023, Appl. Linear Algebra, Probab. Stat., P177
  • [5] Bapat R.B., 2019, Graph and Matrices, Vsecond
  • [6] COLORING OF COMMUTATIVE RINGS
    BECK, I
    [J]. JOURNAL OF ALGEBRA, 1988, 116 (01) : 208 - 226
  • [7] Bora P., Laplacian spectrum of a subgraph of the total graph of Zn
  • [8] Laplacian eigenvalues of the zero divisor graph of the ring Zn
    Chattopadhyay, Sriparna
    Patra, Kamal Lochan
    Sahoo, Binod Kumar
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 584 : 267 - 286
  • [9] On a New Extension of the Zero-Divisor Graph
    Cherrabi, A.
    Essannouni, H.
    Jabbouri, E.
    Ouadfel, A.
    [J]. ALGEBRA COLLOQUIUM, 2020, 27 (03) : 469 - 476
  • [10] Mohar M., 1991, Graph Theory, Combinatorics, and Applications, V2, P871