Machine Learning for Predicting Production Disruptions in the Wood-Based Panels Industry: A Demonstration Case

被引:0
作者
Afonso, Claudia [1 ,2 ]
Matta, Arthur [1 ,2 ]
Matos, Luis Miguel [2 ]
Gomes, Miguel Bastos [3 ]
Santos, Antonina [3 ]
Pilastri, Andre [1 ]
Cortez, Paulo [2 ]
机构
[1] CCG ZGDV Inst, EPMQ, Guimaraes, Portugal
[2] Univ Minho, Dept Informat Syst, ALGORITMI LASI, Guimaraes, Portugal
[3] SONAE Arauco Portugal SA, Oliveira Do Hosp, Portugal
来源
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT II | 2023年 / 676卷
关键词
Anomaly Detection; Industry; 4.0; Machine Learning; Ahead-of-Time Prediction;
D O I
10.1007/978-3-031-34107-6_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study the application of Machine Learning (ML) in detecting and predicting Ahead-of-Time (AoT) production disruptions in a Portuguese Wood-Based Panels Industry. Assuming an Industry 4.0 concept, the analyzed ML classification task presents several challenges, such as a high number of Internet of Things (IoT) sensors, high-velocity data generation and extremely imbalanced data. To solve these issues, we adapt and compare five state-of-the-art ML algorithms for anomaly detection. Moreover, we preprocess the big data and employ a Selective Sampling (SS) technique to train and test computationally efficient ML models. Overall, high-quality results were obtained by an eXtreme Gradient Boosting (XGBoost) model, both in terms of detection and AoT prediction of production stoppages. Finally, we applied an eXplainable AI (XAI) technique based on sensitivity analysis to the XGBoost model, enabling the understanding of the impact of the sensor inputs on the disruption condition.
引用
收藏
页码:340 / 351
页数:12
相关论文
共 16 条
  • [1] Bondu Alexis, 2022, ACM SIGKDD Explorations Newsletter, P12, DOI 10.1145/3575637.3575643
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0
    Calabrese, Matteo
    Cimmino, Martin
    Fiume, Francesca
    Manfrin, Martina
    Romeo, Luca
    Ceccacci, Silvia
    Paolanti, Marina
    Toscano, Giuseppe
    Ciandrini, Giovanni
    Carrotta, Alberto
    Mengoni, Maura
    Frontoni, Emanuele
    Kapetis, Dimos
    [J]. INFORMATION, 2020, 11 (04)
  • [4] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [5] Using sensitivity analysis and visualization techniques to open black box data mining models
    Cortez, Paulo
    Embrechts, Mark J.
    [J]. INFORMATION SCIENCES, 2013, 225 : 1 - 17
  • [6] Cortez P, 2010, LECT NOTES ARTIF INT, V6171, P572, DOI 10.1007/978-3-642-14400-4_44
  • [7] Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges
    Dalzochio, Jovani
    Kunst, Rafael
    Pignaton, Edison
    Binotto, Alecio
    Sanyal, Srijnan
    Favilla, Jose
    Barbosa, Jorge
    [J]. COMPUTERS IN INDUSTRY, 2020, 123
  • [8] An introduction to ROC analysis
    Fawcett, Tom
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 861 - 874
  • [9] An Empirical Study on Anomaly Detection Algorithms for Extremely Imbalanced Datasets
    Fontes, Goncalo
    Matos, Luis Miguel
    Matta, Arthur
    Pilastri, Andre
    Cortez, Paulo
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2022, PART I, 2022, 646 : 85 - 95
  • [10] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1