Wet-Processable Binder in Composite Cathode for High Energy Density All-Solid-State Lithium Batteries

被引:16
作者
Hong, Seung-Bo [1 ]
Jang, Yoo-Rim [2 ]
Kim, Hun [3 ]
Jung, Yun-Chae [4 ]
Shin, Gyuhwang [1 ]
Hah, Hoe Jin [5 ]
Cho, Woosuk [4 ]
Sun, Yang-Kook [2 ,3 ]
Kim, Dong-Won [1 ,2 ]
机构
[1] Hanyang Univ, Dept Chem Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Battery Engn, Seoul 04763, South Korea
[3] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[4] Korea Elect Technol Inst, Adv Batteries Res Ctr, Gyeonggi 13509, South Korea
[5] Battery R&D, LG Energy Solut, Seoul 07796, South Korea
关键词
all-solid-state battery; composite cathode; full-concentration gradient cathode; polymer binder; sulfide electrolyte;
D O I
10.1002/aenm.202400802
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfide-based all-solid-state lithium batteries (ASSLBs) are potential alternatives to conventional lithium-ion batteries for enhancing energy density and battery safety. However, the industrial sector encounters technical challenges in the fabrication of high-mass-loaded composite cathodes to improve the energy densities of ASSLBs. Thus, the selection of an appropriate binder and cathode active material is very important for achieving a good cycling performance of ASSLBs. In this study, wet-processable poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) (EMG) binder and full-concentration gradient (FCG) LiNi0.78Co0.10Mn0.12O2 (NCM) cathode active material are employed to fabricate the composite cathode with high active mass loading (21.4 mg cm-2). The EMG binder provided strong binding properties to the cathode constituents and improved the electrical conductivity of the composite cathode. The FCG NCM mitigated the morphology damages caused by volume changes in the cathode active material during cycling. Consequently, the solid-state lithium battery with the composite cathode employing EMG binder and FCG NCM delivered a high discharge capacity of 196.6 mAh g-1 corresponding to an areal capacity of 4.21 mAh cm-2 and showed good capacity retention of 85.1% after 300 cycles at 0.2 C rate and 30 degrees C. The EMG binder provides strong binding among the cathode constituents and improves the electrical conductivity of the composite cathode. The FCG NCM mitigates the morphology damage caused by volume changes during cycling. The solid-state cell assembled with composite cathode employing EMG and FGC NCM delivers a high discharge capacity of 196.6 mAh g-1 (4.21 mAh cm-2) and exhibits good capacity retention. image
引用
收藏
页数:12
相关论文
共 66 条
[1]   Electronic and Ionic Conductivities of LiNi1/3Mn1/3Co1/3O2-Li3PS4 Positive Composite Electrodes for All-Solid-State Lithium Batteries [J].
Asano, Takamasa ;
Yubuchi, So ;
Sakuda, Atsushi ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (14) :A3960-A3963
[2]   Toward understanding the real mechanical robustness of composite electrode impregnated with a liquid electrolyte [J].
Byun, Seoungwoo ;
Roh, Youngjoon ;
Kim, Kwang Man ;
Ryou, Myung-Hyun ;
Lee, Yong Min .
APPLIED MATERIALS TODAY, 2020, 21
[3]   Amphipathic Binder Integrating Ultrathin and Highly Ion-Conductive Sulfide Membrane for Cell-Level High-Energy-Density All-Solid-State Batteries [J].
Cao, Daxian ;
Li, Qiang ;
Sun, Xiao ;
Wang, Ying ;
Zhao, Xianhui ;
Cakmak, Ercan ;
Liang, Wentao ;
Anderson, Alexander ;
Ozcan, Soydan ;
Zhu, Hongli .
ADVANCED MATERIALS, 2021, 33 (52)
[4]   Processing Strategies to Improve Cell-Level Energy Density of Metal Sulfide Electrolyte-Based All-Solid-State Li Metal Batteries and Beyond [J].
Cao, Daxian ;
Zhao, Yuyue ;
Sun, Xiao ;
Natan, Avi ;
Wang, Ying ;
Xiang, Pengyang ;
Wang, Wei ;
Zhu, Hongli .
ACS ENERGY LETTERS, 2020, 5 (11) :3468-3489
[5]   Super-Ionic Conduction in Solid-State Li7P3S11-Type Sulfide Electrolytes [J].
Chang, Donghee ;
Oh, Kyungbae ;
Kim, Sung Joo ;
Kang, Kisuk .
CHEMISTRY OF MATERIALS, 2018, 30 (24) :8764-8770
[6]   Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithium-Ion Battery Anodes [J].
Choi, Jae-Yong ;
Lee, Dong Jin ;
Lee, Yong Min ;
Lee, Young-Gi ;
Kim, Kwang Man ;
Park, Jung-Ki ;
Cho, Kuk Young .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (17) :2108-2114
[7]  
Haggag K., 2012, J. Appl. Sci. Res, V8, P5169
[8]   An Antiaging Electrolyte Additive for High-Energy-Density Lithium-Ion Batteries [J].
Han, Jung-Gu ;
Hwang, Chihyun ;
Kim, Su Hwan ;
Park, Chanhyun ;
Kim, Jonghak ;
Jung, Gwan Yeong ;
Baek, Kyungeun ;
Chae, Sujong ;
Kang, Seok Ju ;
Cho, Jaephil ;
Kwak, Sang Kyu ;
Song, Hyun-Kon ;
Choi, Nam-Soon .
ADVANCED ENERGY MATERIALS, 2020, 10 (20)
[9]   Single- or Poly-Crystalline Ni-Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will be the Winners for All-Solid-State Batteries? [J].
Han, Yoonjae ;
Jung, Sung Hoo ;
Kwak, Hiram ;
Jun, Seunggoo ;
Kwak, Hunho H. ;
Lee, Jong Hoon ;
Hong, Seung-Tae ;
Jung, Yoon Seok .
ADVANCED ENERGY MATERIALS, 2021, 11 (21)
[10]   Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach [J].
Hippauf, Felix ;
Schumm, Benjamin ;
Doerfler, Susanne ;
Althues, Holger ;
Fujiki, Satoshi ;
Shiratsuchi, Tomoyuki ;
Tsujimura, Tomoyuki ;
Aihara, Yuichi ;
Kaskel, Stefan .
ENERGY STORAGE MATERIALS, 2019, 21 :390-398