Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain

被引:2
作者
Srivastava, Hari M. [1 ,2 ,3 ,4 ,5 ,6 ]
Breaz, Daniel [7 ]
Khan, Shahid [8 ]
Tchier, Fairouz [9 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan
[3] Kyung Hee Univ, Ctr Converging Humanities, Seoul 02447, South Korea
[4] Azerbaijan Univ, Dept Math & Informat, AZ-1007 Baku, Azerbaijan
[5] Int Telematic Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[6] Chung Yuan Christian Univ, Dept Appl Math, Taoyuan City 320314, Taiwan
[7] 1 Decembrie 1918 Univ Alba Iulia, Dept Math, Alba Iulia 510009, Romania
[8] Abbottabad Univ Sci & Technol, Dept Math, Abbottabad 22500, Pakistan
[9] King Saud Univ, Coll Sci, Math Dept, POB 22452, Riyadh 11495, Saudi Arabia
关键词
analytic functions; symmetric quantum calculus; multivalent functions; symmetric q-difference operator; cardioid domain; multivalent q-starlike and q-convex functions; ANALYTIC-FUNCTIONS; STARLIKE FUNCTIONS;
D O I
10.3390/axioms13060366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study some new applications of symmetric quantum calculus in the field of Geometric Function Theory. We use the cardioid domain and the symmetric quantum difference operator to generate new classes of multivalent q-starlike and q-convex functions. We examine a wide range of interesting properties for functions that can be classified into these newly defined classes, such as estimates for the bounds for the first two coefficients, Fekete-Szego-type functional and coefficient inequalities. All the results found in this research are sharp. A number of well-known corollaries are additionally taken into consideration to show how the findings of this research relate to those of earlier studies.
引用
收藏
页数:19
相关论文
共 29 条
  • [1] ON SOME SYMMETRIC q-SPECIAL FUNCTIONS
    Brahim, Kamel
    Sidomou, Yosr
    [J]. MATEMATICHE, 2013, 68 (02): : 107 - 122
  • [2] The q-symmetric variational calculus
    Brito da Cruz, Artur M. C.
    Martins, Natalia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (07) : 2241 - 2250
  • [3] Bulut S., 2021, Korean J. Math, V329, P95
  • [4] Duren PL., 1983, Univalent Functions, Grundlehren der Mathematischen Wissenschaften
  • [5] On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers
    Dziok, Jacek
    Raina, Ravinder Krishna
    Sokol, Janusz
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (5-6) : 1203 - 1211
  • [6] Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers
    Dziok, Jacek
    Raina, Ravinder Krishna
    Sokol, Janusz
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2605 - 2613
  • [7] On α-convex functions related to shell-like functions connected with Fibonacci numbers
    Dziok, Jacek
    Raina, Ravinder Krishna
    Sokol, Janusz
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 996 - 1002
  • [8] Ismail M.E.H., 1990, COMPLEX VAR THEORY A, V14, P77, DOI [10.1080/17476939008814407, DOI 10.1080/17476939008814407]
  • [9] Jackson F.H., 1910, Q. J. Pure Appl. Math, V41, P193, DOI DOI 10.1017/S0080456800002751
  • [10] Jackson F.H., 1909, Earth Environ. Sci. Trans. Roy. Soc. Edinb., V46, P253, DOI [10.1017/s0080456800002751, DOI 10.1017/S0080456800002751, 10.1017/S0080456800002751]