Sets of Probability Measures and Convex Combination Spaces

被引:0
作者
Alonso de la Fuente, Miriam [1 ]
Teran, Pedro [1 ]
机构
[1] Univ Oviedo, Oviedo, Spain
来源
INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, VOL 215 | 2023年 / 215卷
关键词
compact sets of probabilities; convolution; credal set; law of large numbers; Wasserstein metric; RANDOM ELEMENTS; CONVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Wasserstein distances between probability distributions are an important tool in modern probability theory which has been generalized to sets of probability distributions. We will show that the (generalized) L-1-Wasserstein metric, with the operations of convolution and rescaling, fits in the abstract framework of convex combination spaces: nonlinear metric spaces preserving some of the nice properties of a normed space but accomodating other unusual behaviours. For instance, unlike in a linear space, a singleton {P} is typically not convex (it is so only if P is degenerate). Also, some theorems for convex combination spaces are applied to this setting.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 15 条
[1]   Trimmed comparison of distributions [J].
Alvarez-Esteban, Pedro Cesar ;
Del Barrio, Eustasio ;
Cuesta-Albertos, Juan Antonio ;
Matran, Carlos .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) :697-704
[2]  
Ambrosio L., 2005, LEC MATH, DOI 10.1007/b137080
[3]  
Chen Y., J. Amer. Statist. Assoc
[4]   Convergence theorems for random elements in convex combination spaces [J].
de la Fuente, Miriam Alonso ;
Teran, Pedro .
FUZZY SETS AND SYSTEMS, 2023, 458 :69-93
[5]   Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations [J].
Esfahani, Peyman Mohajerin ;
Kuhn, Daniel .
MATHEMATICAL PROGRAMMING, 2018, 171 (1-2) :115-166
[6]  
Kallenberg O., 2002, Foundations of Modern Probability, DOI DOI 10.1007/978-1-4757-4015-8
[7]   Wasserstein barycenters over Riemannian manifolds [J].
Kim, Young-Heon ;
Pass, Brendan .
ADVANCES IN MATHEMATICS, 2017, 307 :640-683
[8]   Generalized Wasserstein Distance and Weak Convergence of Sublinear Expectations [J].
Li, Xinpeng ;
Lin, Yiqing .
JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (02) :581-593
[9]  
Panaretos V M., 2020, An Invitation to Statistics in Wasserstein Space
[10]  
Peng S., 2019, Nonlinear Expectations and Stochastic Calculus under Uncertainty