Fully Dynamic Matching: Beating 2-Approximation in Δε Update Time

被引:0
|
作者
Behnezhad, Soheil [1 ]
Lacki, Jakub [2 ]
Mirrokni, Vahab [2 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Google Res, Mountain View, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In fully dynamic graphs, we know how to maintain a 2-approximation of maximum matching extremely fast, that is, in polylogarithmic update time or better. In a sharp contrast and despite extensive studies, all known algorithms that maintain a 2 - Omega(1) approximate matching are much slower. Understanding this gap and, in particular, determining the best possible update time for algorithms providing a better-than-2 approximate matching is a major open question. In this paper, we show that for any constant epsilon > 0, there is a randomized algorithm that with high probability maintains a 2 - Omega(1) approximate maximum matching of a fully-dynamic general graph in worst-case update time O(Delta(epsilon) + polylog n), where Delta is the maximum degree. Previously, the fastest fully dynamic matching algorithm providing a better-than-2 approximation had O(m(1/4)) update-time [Bernstein and Stein, SODA 2016]. A faster algorithm with update-time O(n(epsilon)) was known, but worked only for maintaining the size (and not the edges) of the matching in bipartite graphs [Bhattacharya, Henzinger, and Nanongkai, STOC 2016].
引用
收藏
页码:2492 / 2508
页数:17
相关论文
共 50 条
  • [1] Fully Dynamic Matching: Beating 2-Approximation in Δε Update Time
    Behnezhad, Soheil
    Lacki, Jakub
    Mirrokni, Vahab
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 2492 - 2508
  • [2] Fully Dynamic Matching: (2-√2)-Approximation in Polylog Update Time
    Azarmehr, Amir
    Behnezhad, Soheil
    Roghani, Mohammad
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 3040 - 3061
  • [3] Beating the 2-approximation factor for global bicut
    Kristóf Bérczi
    Karthekeyan Chandrasekaran
    Tamás Király
    Euiwoong Lee
    Chao Xu
    Mathematical Programming, 2019, 177 : 291 - 320
  • [4] Beating the 2-approximation factor for global bicut
    Berczi, Kristof
    Chandrasekaran, Karthekeyan
    Kiraly, Tamas
    Lee, Euiwoong
    Xu, Chao
    MATHEMATICAL PROGRAMMING, 2019, 177 (1-2) : 291 - 320
  • [5] Fully Dynamic Maximal Matching in Constant Update Time
    Solomon, Shay
    2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2016, : 325 - 334
  • [6] Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time
    Bhattacharya, Sayan
    Kiss, Peter
    Urak, Thatchaphol saran
    Wajc, David
    JOURNAL OF THE ACM, 2024, 71 (05)
  • [7] Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time
    Bhattacharya, Sayan
    Kiss, Peter
    Saranurak, Thatchaphol
    Wajc, David
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 100 - 128
  • [8] An FPT Algorithm Beating 2-Approximation for k-Cut
    Gupta, Anupam
    Lee, Euiwoong
    Li, Jason
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 2821 - 2837
  • [9] Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs
    Preis, R
    STACS'99 - 16TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 1999, 1563 : 259 - 269
  • [10] Fully dynamic maximal matching in O(log n) update time
    Baswana, Surender
    Gupta, Manoj
    Sen, Sandeep
    2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, : 383 - 392