Modeling interactions between Heparan sulfate and proteins based on the Heparan sulfate microarray analysis

被引:1
作者
Melo-Filho, Cleber C. [1 ]
Su, Guowei [2 ]
Liu, Kevin [2 ]
Muratov, Eugene N. [1 ]
Tropsha, Alexander [1 ,4 ]
Liu, Jian [3 ,5 ]
机构
[1] Univ N Carolina, UNC Eshelman Sch Pharm, Div Chem Biol & Med Chem, Lab Mol Modeling, 301 Beard Hall, Chapel Hill, NC 27599 USA
[2] Glycan Therapeut, 617 Hutton St, Raleigh, NC 27606 USA
[3] Univ N Carolina, Eshelman Sch Pharm, Div Chem Biol & Med Chem, 1044 Genet Med Bldg, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Eshelman Sch Pharm, 100K Beard Hall, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, Eshelman Sch Pharm, 1044 Genet Med Bldg, Chapel Hill, NC 27599 USA
关键词
chemoenzymatic synthesis; Glycan microarray; heparin; oligosaccharides; RANDOM FOREST; IN-VIVO; NITROAROMATICS; TOXICITY; CHEMINFORMATICS; CURATION; BINDING; VERIFY; TRUST;
D O I
10.1093/glycob/cwae039
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heparan sulfate (HS), a sulfated polysaccharide abundant in the extracellular matrix, plays pivotal roles in various physiological and pathological processes by interacting with proteins. Investigating the binding selectivity of HS oligosaccharides to target proteins is essential, but the exhaustive inclusion of all possible oligosaccharides in microarray experiments is impractical. To address this challenge, we present a hybrid pipeline that integrates microarray and in silico techniques to design oligosaccharides with desired protein affinity. Using fibroblast growth factor 2 (FGF2) as a model protein, we assembled an in-house dataset of HS oligosaccharides on microarrays and developed two structural representations: a standard representation with all atoms explicit and a simplified representation with disaccharide units as "quasi-atoms." Predictive Quantitative Structure-Activity Relationship (QSAR) models for FGF2 affinity were developed using the Random Forest (RF) algorithm. The resulting models, considering the applicability domain, demonstrated high predictivity, with a correct classification rate of 0.81-0.80 and improved positive predictive values (PPV) up to 0.95. Virtual screening of 40 new oligosaccharides using the simplified model identified 15 computational hits, 11 of which were experimentally validated for high FGF2 affinity. This hybrid approach marks a significant step toward the targeted design of oligosaccharides with desired protein interactions, providing a foundation for broader applications in glycobiology.
引用
收藏
页数:8
相关论文
共 36 条
[1]   QSAR Modeling of SARS-CoV MproInhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and Other Drugs as Candidates for Repurposing against SARS-CoV-2 [J].
Alves, Vinicius M. ;
Bobrowski, Tesia ;
Melo-Filho, Cleber C. ;
Korn, Daniel ;
Auerbach, Scott ;
Schmitt, Charles ;
Muratov, Eugene N. ;
Tropsha, Alexander .
MOLECULAR INFORMATICS, 2021, 40 (01)
[2]   Cheminformatics-driven discovery of polymeric micelle formulations for poorly soluble drugs [J].
Alves, Vinicius M. ;
Hwang, Duhyeong ;
Muratov, Eugene ;
Sokolsky-Papkov, Marina ;
Varlamova, Ekaterina ;
Vinod, Natasha ;
Lim, Chaemin ;
Andrade, Carolina H. ;
Tropsha, Alexander ;
Kabanov, Alexander .
SCIENCE ADVANCES, 2019, 5 (06)
[3]  
Arnold K., 2017, Pharmaceuticals, V10, P1
[4]   QSAR analysis of the toxicity of nitroaromatics in Tetrahymena pyriformis: structural factors and possible modes of action [J].
Artemenko, A. G. ;
Muratov, E. N. ;
Kuz'min, V. E. ;
Muratov, N. N. ;
Varlamova, E. V. ;
Kuz'mina, A. V. ;
Gorb, L. G. ;
Golius, A. ;
Hill, F. C. ;
Leszczynski, J. ;
Tropsha, A. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2011, 22 (5-6) :575-601
[5]  
Baryal KN, 2023, ANGEW CHEM INT EDIT, V62, DOI 10.1002/anie.202211985
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Chembench: A Publicly Accessible, Integrated Cheminformatics Portal [J].
Capuzzi, Stephen J. ;
Kim, Ian Sang-June ;
Lam, Wai In ;
Thornton, Thomas E. ;
Muratov, Eugene N. ;
Pozefsky, Diane ;
Tropsha, Alexander .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (02) :105-108
[8]   QSAR Modeling: Where Have You Been? Where Are You Going To? [J].
Cherkasov, Artem ;
Muratov, Eugene N. ;
Fourches, Denis ;
Varnek, Alexandre ;
Baskin, Igor I. ;
Cronin, Mark ;
Dearden, John ;
Gramatica, Paola ;
Martin, Yvonne C. ;
Todeschini, Roberto ;
Consonni, Viviana ;
Kuz'min, Victor E. ;
Cramer, Richard ;
Benigni, Romualdo ;
Yang, Chihae ;
Rathman, James ;
Terfloth, Lothar ;
Gasteiger, Johann ;
Richard, Ann ;
Tropsha, Alexander .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (12) :4977-5010
[9]  
Chopra P., 2021, Proc Natl Acad Sci, V118, P1
[10]   Comparing the Influence of Simulated Experimental Errors on 12 Machine Learning Algorithms in Bioactivity Modeling Using 12 Diverse Data Sets [J].
Cortes-Ciriano, Isidro ;
Bender, Andreas ;
Malliavin, Therese E. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (07) :1413-1425