Initial Coefficient Bounds for Certain New Subclasses of Bi-Univalent Functions Involving Mittag-Leffler Function with Bounded Boundary Rotation

被引:1
作者
Aldawish, Ibtisam [1 ]
Sharma, Prathviraj [2 ]
El-Deeb, Sheza M. [3 ,4 ]
Almutiri, Mariam R. [3 ]
Sivasubramanian, Srikandan [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 11564, Saudi Arabia
[2] Anna Univ, Univ Coll Engn Tindivanam, Dept Math, Tindivanam 604001, Tamil Nadu, India
[3] Qassim Univ, Coll Sci, Dept Math, Buraydah 51452, Saudi Arabia
[4] Damietta Univ, Fac Sci, Dept Math, New Damietta 34517, Egypt
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 08期
关键词
holomorphic; bi-univalent functions; convolution; Mittag-Leffler function; bounded boundary rotation; SYMMETRIC FUNCTIONS;
D O I
10.3390/sym16080971
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By using the Mittag-Leffler function associated with functions of bounded boundary rotation, the authors introduce a few new subclasses of bi-univalent functions involving the Mittag-Leffler function with bounded boundary rotation in the open unit disk D. For these new classes, the authors establish initial coefficient bounds of |a2| and |a3|. Furthermore, the famous Fekete-Szeg & ouml; coefficient inequality is also obtained for these new classes of functions.
引用
收藏
页数:16
相关论文
共 29 条
[1]   Functions which map the interior of the unit circle upon simple regions. [J].
Alexander, JW .
ANNALS OF MATHEMATICS, 1915, 17 :12-22
[2]   Some Applications of Mittag-Leffler Function in the Unit Disk [J].
Attiya, Adel A. .
FILOMAT, 2016, 30 (07) :2075-2081
[3]  
Biernacki M., 1960, Bull. Acad. Polon. Sci, V8, P29
[4]  
Brannan D.A., 1980, Aspects of contemporary complex analysis
[5]  
Brannan D. A., 1988, Studia Univ. Babes-Bolyai Math., V31, P53, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
[6]  
El-Deeb S.M., 2020, Abstr. Appl. Anal, V2020, P1, DOI [10.1155/2020/8368951, DOI 10.1155/2020/8368951]
[7]   Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative [J].
El-Deeb, Sheza M. ;
Bulboaca, Teodor ;
El-Matary, Bassant M. .
MATHEMATICS, 2020, 8 (03)
[8]  
KOEPF W, 1989, P AM MATH SOC, V105, P324
[9]   ODD FUNCTIONS OF BOUNDED BOUNDARY ROTATION [J].
LEACH, RJ .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1974, 26 (03) :551-564
[10]   COEFFICIENTS OF SYMMETRIC FUNCTIONS OF BOUNDED BOUNDARY ROTATION [J].
LEACH, RJ .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1974, 26 (06) :1351-1355