Advancing precision fermentation: Minimizing power demand of industrial scale bioreactors through mechanistic modelling

被引:4
作者
Jahanian, Ali [1 ,2 ,3 ]
Ramirez, Jerome [1 ,2 ,3 ]
O'Hara, Ian [1 ,2 ,3 ,4 ]
机构
[1] Queensland Univ Technol, Fac Engn, Sch Mech Med & Proc Engn, Brisbane, Qld, Australia
[2] Queensland Univ Technol, Fac Sci, Ctr Agr & Bioecon, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, ARC Ctr Excellence Synthet Biol, Brisbane, Qld, Australia
[4] Queensland Univ Technol, ARC Ind Transformat Training Ctr Bioplast & Biocom, Brisbane, Qld, Australia
基金
澳大利亚研究理事会;
关键词
Bioreactor; Precision fermentation; Power consumption; Industrial-scale; Optimization; OXYGEN MASS-TRANSFER; TRANSFER COEFFICIENT; STIRRED-TANK; THEORETICAL PREDICTION; BUBBLE-COLUMN; GAS; CONSUMPTION; AGITATION; AERATION; ENERGY;
D O I
10.1016/j.compchemeng.2024.108755
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Minimizing power consumption in large-scale aerobic fermentation is essential for cost-effective operations. A mechanistic model of aerobic precision fermentation was developed integrating microbial growth parameters, thermodynamic data, and bioreactor properties. Results showed that agitation power dominated energy consumption at low oxygen transfer rates ( OTR ), shifting to aeration power (70 % of total) at high cell growth rates. In high OTRs , mixing time reduced to 60 s from an initial value of 211 s. Scale-up from 5 m 3 to 100 m 3 decreased total specific power by 88 %. Operating at elevated headspace pressure lowered agitation speed, reducing total power consumption at high OTR . Impeller to bioreactor diameter ratio impacted the required agitation speed without significantly altering total power demand. Experimental data in a 100 L case study indicated a 0.43 kW. m - 3 average power requirement across a 96-hour fermentation period. Our model demonstrates effective strategies for minimization of power consumption in industrial-scale aerobic fermentations.
引用
收藏
页数:15
相关论文
共 79 条
  • [11] Individual impeller flooding in aerated vessel stirred by multiple-Rushton impellers
    Bombac, A
    Zun, I
    [J]. CHEMICAL ENGINEERING JOURNAL, 2006, 116 (02) : 85 - 95
  • [12] Precision fermentation to advance fungal food fermentations
    Chai, Kong F.
    Ng, Kuan R.
    Samarasiri, Malsha
    Chen, Wei N.
    [J]. CURRENT OPINION IN FOOD SCIENCE, 2022, 47
  • [13] Real-time dissolved carbon dioxide monitoring I: Application of a novel in situ sensor for CO2 monitoring and control
    Chopda, Viki R.
    Holzberg, Timothy
    Ge, Xudong
    Folio, Brandon
    Tolosa, Michael
    Kostov, Yordan
    Tolosa, Leah
    Rao, Govind
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (04) : 981 - 991
  • [14] COOKE M, 1988, 2ND INTERNATIONAL CONFERENCE ON BIOREACTOR FLUID DYNAMICS, P37
  • [15] Scale-up of industrial microbial processes
    Crater, Jason S.
    Lievense, Jefferson C.
    [J]. FEMS MICROBIOLOGY LETTERS, 2018, 365 (13)
  • [16] Local power uptake in gas-liquid systems with single and multiple Rushton turbines
    Cui, YQ
    vanderLans, RGJM
    Luyben, KCAM
    [J]. CHEMICAL ENGINEERING SCIENCE, 1996, 51 (11) : 2631 - 2636
  • [17] DESIGN P., Sizing Impellers for Agitated Aerobic Fermenters
  • [18] Design of mixing systems for plant cell suspensions in stirred reactors
    Doran, PM
    [J]. BIOTECHNOLOGY PROGRESS, 1999, 15 (03) : 319 - 335
  • [19] Enamala MK, 2019, MICROORG SUSTAIN, V17, P201, DOI 10.1007/978-981-13-8844-6_9
  • [20] Influence of Spacing of Multiple Impellers on Power Input in an Industrial-Scale Aerated Stirred Tank Reactor
    Fitschen, Juergen
    Maly, Marc
    Rosseburg, Annika
    Wutz, Johannes
    Wucherpfennig, Thomas
    Schlueter, Michael
    [J]. CHEMIE INGENIEUR TECHNIK, 2019, 91 (12) : 1794 - 1801