Multidimensional perturbed consistency learning for semi-supervised medical image segmentation

被引:0
作者
Yuan, Enze [1 ,2 ]
Zhao, Bin [1 ,2 ,3 ,5 ]
Qin, Xiao [4 ]
Ding, Shuxue [1 ,2 ,5 ]
机构
[1] Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin, Guangxi, Peoples R China
[2] Guangxi Coll & Univ Key Lab AI Algorithm Engn, Guilin, Guangxi, Peoples R China
[3] Guilin Univ Elect Technol, Sch Informat & Commun, Guilin, Guangxi, Peoples R China
[4] Guangxi Acad Sci, Nanning, Guangxi, Peoples R China
[5] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab AI Algorithm Engn, Sch Artificial Intelligence, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
consistency learning; medical image segmentation; multidimensional perturbation; semi-supervised learning; CLASSIFICATION;
D O I
10.1002/ima.23095
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we propose a novel multidimensional perturbed consistency network (MPCNet) for more accurate semi-supervised medical image segmentation. Specifically, we develop a multidimensional perturbation by considering the noise itself, the target object and the overall spatial architecture. This type of perturbation can disrupt the propagation process of abstract features over a wide range, enabling the model to learn the distribution of comprehensive data. In addition, we design a shared encoder to extract multi-scale features. After subjecting these features to multidimensional perturbation, a consistency constraint is applied between different results output by three independent decoders. This constraint aims to minimize the statistical differences between these results and effectively leverage unlabeled data. Experimental results on the public LA, Pancreas-CT and ACDC datasets demonstrate that our method outperforms recent SOTA semi-supervised learning methods in terms of various metrics. Our code is released publicly at .
引用
收藏
页数:13
相关论文
共 32 条
  • [1] Bai YH, 2023, Arxiv, DOI arXiv:2305.00673
  • [2] Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
    Bernard, Olivier
    Lalande, Alain
    Zotti, Clement
    Cervenansky, Frederick
    Yang, Xin
    Heng, Pheng-Ann
    Cetin, Irem
    Lekadir, Karim
    Camara, Oscar
    Gonzalez Ballester, Miguel Angel
    Sanroma, Gerard
    Napel, Sandy
    Petersen, Steffen
    Tziritas, Georgios
    Grinias, Elias
    Khened, Mahendra
    Kollerathu, Varghese Alex
    Krishnamurthi, Ganapathy
    Rohe, Marc-Michel
    Pennec, Xavier
    Sermesant, Maxime
    Isensee, Fabian
    Jaeger, Paul
    Maier-Hein, Klaus H.
    Full, Peter M.
    Wolf, Ivo
    Engelhardt, Sandy
    Baumgartner, Christian F.
    Koch, Lisa M.
    Wolterink, Jelmer M.
    Isgum, Ivana
    Jang, Yeonggul
    Hong, Yoonmi
    Patravali, Jay
    Jain, Shubham
    Humbert, Olivier
    Jodoin, Pierre-Marc
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2514 - 2525
  • [3] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
    Chen, Xiaokang
    Yuan, Yuhui
    Zeng, Gang
    Wang, Jingdong
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2613 - 2622
  • [4] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [5] Hang W., 2020, Local and global structure-aware entropy regularized mean teacher model for 3D left atrium segmentation: International Conference on Medical Image Computing and Computer-Assisted Intervention, 562-571
  • [6] Huang HJ, 2022, Arxiv, DOI arXiv:2210.01438
  • [7] nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
    Isensee, Fabian
    Jaeger, Paul F.
    Kohl, Simon A. A.
    Petersen, Jens
    Maier-Hein, Klaus H.
    [J]. NATURE METHODS, 2021, 18 (02) : 203 - +
  • [8] Jin Q., 2022, Semi-supervised histological image segmentation via hierarchical consistency enforcement, in: Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, September 18-22, 2022, Proceedings, Part II, 3-13
  • [9] Laine S., 2016, INT C LEARNING REPRE
  • [10] Lee D.-H., 2013, WORKSH CHALL REPR LE, V3, P896